Previous​ Next
  • MinireviewMay 31, 2019

    0 687 2556

    Non-Coding RNAs in Caenorhabditis elegans Aging

    Sieun S. Kim and Seung-Jae V. Lee

    Mol. Cells 2019; 42(5): 379-385

    Abstract : Non-coding RNAs (ncRNAs) comprise various RNA species, including small ncRNAs and long ncRNAs (lncRNAs). ncRNAs regulate various cellular processes, including transcription and translation of target messenger RNAs. Recent studies also indicate that ncRNAs affect organismal aging and conversely aging influences ncRNA levels. In this review, we discuss our current understanding of the roles of ncRNAs in aging and longevity, focusing on recent advances using the roundworm Caenorhabditis elegans. Expression of various ncRNAs, including microRNA (miRNA), tRNA-derived small RNA (tsRNA), ribosomal RNA (rRNA), PIWI-interacting RNA (piRNA), circular RNA (circRNA), and lncRNA, is altered during aging in C. elegans. Genetic modulation of specific ncRNAs affects longevity and aging rates by modulating established aging-regulating protein factors. Because many aging-regulating mechanisms in C. elegans are evolutionarily conserved, these studies will provide key information regarding how ncRNAs modulate aging and lifespan in complex organisms, including mammals.

  • MinireviewMay 31, 2019

    0 841 3241

    Site-Specific Labeling of Proteins Using Unnatural Amino Acids

    Kyung Jin Lee, Deokhee Kang, and Hee-Sung Park

    Mol. Cells 2019; 42(5): 386-396

    Abstract : Labeling of a protein with a specific dye or tag at defined positions is a critical step in tracing the subtle behavior of the protein and assessing its cellular function. Over the last decade, many strategies have been developed to achieve selective labeling of proteins in living cells. In particular, the site-specific unnatural amino acid (UAA) incorporation technique has gained increasing attention since it enables attachment of various organic probes to a specific position of a protein in a more precise way. In this review, we describe how the UAA incorporation technique has expanded our ability to achieve site-specific labeling and visualization of target proteins for functional analyses in live cells.

  • Research ArticleMay 31, 2019

    0 794 1325

    Silence of LncRNA GAS5 Protects Cardiomyocytes H9c2 against Hypoxic Injury via Sponging miR-142-5p

    Jian Du, Si-Tong Yang, Jia Liu, Ke-Xin Zhang, and Ji-Yan Leng

    Mol. Cells 2019; 42(5): 397-405

    Abstract : The regulatory role of long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in both cancerous and noncancerous cells have been widely reported. This study aimed to evaluate the role of lncRNA GAS5 in heart failure caused by myocardial infarction. We reported that silence of lncRNA GAS5 attenuated hypoxia-triggered cell death, as cell viability was increased and apoptosis rate was decreased. This phenomenon was coupled with the down-regulated expression of p53, Bax and cleaved caspase-3, as well as the up-regulated expression of CyclinD1, CDK4 and Bcl-2. At the meantime, the expression of four heart failure-related miRNAs was altered when lncRNA GAS5 was silenced (miR-21 and miR-142-5p were up-regulated; miR-30b and miR-93 were down-regulated). RNA immunoprecipitation assay results showed that lncRNA GAS5 worked as a molecular sponge for miR-142-5p. More interestingly, the protective actions of lncRNA GAS5 silence on hypoxia-stimulated cells were attenuated by miR-142-5p suppression. Besides, TP53INP1 was a target gene for miR-142-5p. Silence of lncRNA GAS5 promoted the activation of PI3K/AKT and MEK/ERK signaling pathways in a miR-142-5p-dependent manner. Collectively, this study demonstrated that silence of lncRNA GAS5 protected H9c2 cells against hypoxia-induced injury possibly via sponging miR-142-5p, functionally releasing TP53INP1 mRNA transcripts that are normally targeted by miR-142-5p.

  • Research ArticleMay 31, 2019

    0 600 1230

    Overexpression of RICE FLOWERING LOCUS T 1 (RFT1) Induces Extremely Early Flowering in Rice

    Richa Pasriga, Jinmi Yoon, Lae-Hyeon Cho, and Gynheung An

    Mol. Cells 2019; 42(5): 406-417

    Abstract : RICE FLOWERING LOCUS T 1 (RFT1) is a major florigen that functions to induce reproductive development in the shoot apical meristem (SAM). To further our study of RFT1, we overexpressed the gene and examined the expression patterns of major regulatory genes during floral transition and inflorescence development. Overexpression induced extremely early flowering in the transgenics, and a majority of those calli directly formed spikelets with a few spikelets, thus bypassing normal vegetative development. FRUITFULL (FUL)-clade genes OsMADS14, OsMADS15, and OsMADS18 were highly induced in the RFT1-expressing meristems. OsMADS34 was also induced in the meristems. This indicated that RFT1 promotes the expression of major regulatory genes that are important for inflorescence development. RFT1 overexpression also induced SEPALLATA (SEP)-clade genes OsMADS1, OsMADS5, and OsMADS7 in the greening calli before floral transition occurred. This suggested their possible roles at the early reproductive stages. We found it interesting that expression of OsFD1 as well as OsFD2 and OsFD3 was strongly increased in the RFT1-expressing calli and spikelets. At a low frequency, those calli produced plants with a few leaves that generated a panicle with a small number of spikelets. In the transgenic leaves, the FUL-clade genes and OsMADS34 were induced, but SEP-clade gene expression was not increased. This indicated that OsMADS14, OsMADS15, OsMADS18, and OsMADS34 act immediately downstream of RFT1.

  • Research ArticleMay 31, 2019

    0 299 641

    Real-Time Temporal Dynamics of Bicistronic Expression Mediated by Internal Ribosome Entry Site and 2A Cleaving Sequence

    Soomin Lee, Jeong-Ah Kim, Hee-Dae Kim, Sooyoung Chung, Kyungjin Kim, and Han Kyoung Choe

    Mol. Cells 2019; 42(5): 418-425

    Abstract : Multicistronic elements, such as the internal ribosome entry site (IRES) and 2A-like cleavage sequence, serve crucial roles in the eukaryotic ectopic expression of exogenous genes. For utilization of multicistronic elements, the cleavage efficiency and order of elements in multicistronic vectors have been investigated; however, the dynamics of multicistronic element-mediated expression remains unclear. Here, we investigated the dynamics of encephalomyocarditis virus (EMCV) IRES- and porcine teschovirus-1 2A (p2A)-mediated expression. By utilizing real-time fluorescent imaging at a minute-level resolution, we monitored the expression of fluorescent reporters bridged by either EMCV IRES or p2A in two independent cultured cell lines, HEK293 and Neuro2a. We observed significant correlations for the two fluorescent reporters in both multicistronic elements, with a higher correlation coefficient for p2A in HEK293 but similar coefficients for IRES-mediated expression and p2A-mediated expression in Neuro2a. We further analyzed the causal relationship of multicistronic elements by convergent cross mapping (CCM). CCM revealed that in all four conditions examined, the expression of the preceding gene causally affected the dynamics of the subsequent gene. As with the cross correlation, the predictive skill of p2A was higher than that of IRES in HEK293, while the predictive skills of the two multicistronic elements were indistinguishable in Neuro2a. To summarize, we report a significant temporal correlation in both EMCV IRES- and p2A-mediated expression based on the simple bicistronic vector and real-time fluorescent monitoring. The current system also provides a valuable platform to examine the dynamic aspects of expression mediated by diverse multicistronic elements under various physiological conditions.

  • Research ArticleMay 31, 2019

    0 233 755

    Mechanisms for Hfq-Independent Activation of rpoS by DsrA, a Small RNA, in Escherichia coli

    Wonkyong Kim, Jee Soo Choi, Daun Kim, Doohang Shin, Shinae Suk, and Younghoon Lee

    Mol. Cells 2019; 42(5): 426-439

    Abstract : Many small RNAs (sRNAs) regulate gene expression by base pairing to their target messenger RNAs (mRNAs) with the help of Hfq in Escherichia coli. The sRNA DsrA activates translation of the rpoS mRNA in an Hfq-dependent manner, but this activation ability was found to partially bypass Hfq when DsrA is overproduced. The precise mechanism by which DsrA bypasses Hfq is unknown. In this study, we constructed strains lacking all three rpoS-activating sRNAs (i.e., ArcZ, DsrA, and RprA) in hfq+ and Hfq backgrounds, and then artificially regulated the cellular DsrA concentration in these strains by controlling its ectopic expression. We then examined how the expression level of rpoS was altered by a change in the concentration of DsrA. We found that the translation and stability of the rpoS mRNA are both enhanced by physiological concentrations of DsrA regardless of Hfq, but that depletion of Hfq causes a rapid degradation of DsrA and thereby decreases rpoS mRNA stability. These results suggest that the observed Hfq dependency of DsrA-mediated rpoS activation mainly results from the destabilization of DsrA in the absence of Hfq, and that DsrA itself contributes to the translational activation and stability of the rpoS mRNA in an Hfq-independent manner.

Mol. Cells
Aug 31, 2022 Vol.45 No.8
Cryo-EM structure of human porphyrin transporter ABCB6 (main figure) shows that binding of hemin (inset, magenta) in concert with two glutathione molecules (cyan) primes ABCB6 for high ATP turnover (Kim et al., pp. 575-587).


Molecules and Cells

eISSN 0219-1032
qr-code Download