Yang Fan, Lirui Xie, and Chang Y. Chung
Mol. Cells 2017; 40(3): 163-168 https://doi.org/10.14348/molcells.2017.0011Abstract : Microglia are the primary resident immune cells of the central nervous system (CNS). They are the first line of defense of the brain’s innate immune response against infection, injury, and diseases. Microglia respond to extracellular signals and engulf unwanted neuronal debris by phagocytosis, thereby maintaining normal cellular homeostasis in the CNS. Pathological stimuli such as neuronal injury induce transformation and activation of resting microglia with ramified morphology into a motile amoeboid form and activated microglia chemotax toward lesion site. This review outlines the current research on microglial activation and chemotaxis.
Je Yeong Ko, Sumin Oh, and Kyung Hyun Yoo
Mol. Cells 2017; 40(3): 169-177 https://doi.org/10.14348/molcells.2017.0033Abstract : Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development.
Yunfei Wu, Wenzhu Yang, Jinhuan Wei, Hyeryung Yoon, and Gynheung An
Mol. Cells 2017; 40(3): 178-185 https://doi.org/10.14348/molcells.2017.2261Abstract : Nitrogen is one of the most important mineral elements for plant growth. We studied the functional roles of
Jin Kwon Jeong, Jae Geun Kim, Han Rae Kim, Tae Hwan Lee, Jeong Woo Park, and Byung Ju Lee
Mol. Cells 2017; 40(3): 186-194 https://doi.org/10.14348/molcells.2017.2278Abstract : A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism.
Ying Dong, Xintian Jin, Zhiqiang Sun, Yueming Zhao, and Xianjing Song
Mol. Cells 2017; 40(3): 195-201 https://doi.org/10.14348/molcells.2017.2291Abstract : In this study, qRT-PCR was employed to identify that miR-186 expression level in NSCLC tissues are highly associated with lymph node metastasis. In addition, through the application of western blotting, luciferase assay and qRT-PCR, it was found that miR-186 targeted 3′UTR of cdc42 mRNA and down-regulated cdc42 protein level in a post-transcriptional manner. Transwell assay indicated that cdc42 partially reversed the effect of miR-186 mimics. Besides, miR-186 was proved to regulate EMT by influencing biomarkers of this process and cell adhesion ability. Thus, miR-186 is a potential target for NSCLC therapy. miR-186 is proposed to be one of tumor-suppressors and may serve as a therapeutic target in NSCLC treatment.
Zhengyuan Xie, Zhihua Xiao, and Fenfen Wang
Mol. Cells 2017; 40(3): 202-210 https://doi.org/10.14348/molcells.2017.2299Abstract : The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus (HCV) RNA genome is a multifunctional phosphoprotein. To analyse the influence of NS5A on apoptosis, we established an Hep-NS5A cell line (HepG2 cells that stably express NS5A) and induced apoptosis using tumour necrosis factor (TNF)-α. We utilised the MTT assay to detect cell viability, real-time quantitative polymerase chain reaction and Western blot to analyse gene and protein expression, and a luciferase reporter gene experiment to investigate the targeted regulatory relationship. Chromatin immunoprecipitation was used to identify the combination of NF-κB and miR-503. We found that overexpression of NS5A inhibited TNF-αinduced hepatocellular apoptosis via regulating miR-503 expression. The cell viability of the TNF-α induced Hep-mock cells was significantly less than the viability of the TNF-α induced Hep-NS5A cells, which demonstrates that NS5A inhibited TNF-α-induced HepG2 cell apoptosis. Under TNF-α treatment, miR-503 expression was decreased and cell viability and B-cell lymphoma 2 (bcl-2) expression were increased in the Hep-NS5A cells. Moreover, the luciferase reporter gene experiment verified that bcl-2 was a direct target of miR-503, NS5A inhibited TNF-α-induced NF-κB activation and NF-κB regulated miR-503 transcription by combining with the miR-503 promoter. After the Hep-NS5A cells were transfected with miR-503 mimics, the data indicated that the mimics could reverse TNF-α-induced cell apoptosis and blc-2 expression. Collectively, our findings suggest a possible molecular mechanism that may contribute to HCV treatment in which NS5A inhibits NF-κB activation to decrease miR-503 expression and increase bcl-2 expression, which leads to a decrease in hepatocellular apoptosis.
Hongying Zhao, Jun Zhang, Haiyu Shao, Jianwen Liu, Mengran Jin, Jinping Chen, and Yazeng Huang
Mol. Cells 2017; 40(3): 211-221 https://doi.org/10.14348/molcells.2017.2303Abstract : Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site
Rilong Jin, Miaoda Shen, Liedao Yu, Xuanwei Wang, and Xiangjin Lin
Mol. Cells 2017; 40(3): 222-229 https://doi.org/10.14348/molcells.2017.2314Abstract : Adipose-derived stem cells (ADSCs) were previously considered to have an anti-inflammatory effect, and Interleukin-1β (IL-1β) was found to be a pro-inflammatory factor in chondrocytes, but the mechanism underlying ADSCs and IL-1β is unclear. In this study, we investigate whether P2X7 receptor (P2X7R) signalling, regulated by microRNA 373 (miR-373), was involved in the ADSCs and IL-1β mediated inflammation in osteoarthritis (OA). Chondrocytes were collected from 20 OA patients and 20 control participants, and ADSCs were collected from patients who had undergone abdominal surgery. The typical surface molecules of ASDCs were detected by flow cytometry. The level of nitric oxide (NO) was determined by Griess reagent. Concentrations of prostaglandin E2 (PGE2), interleukin 6 (IL-6), matrix metallopeptidase 3 (MMP-3) were detected by enzyme-linked immunosorbent assay (ELISA). The expressions of IL-6, MMP-3, miR-373 and P2X7R were determined by real-time polymerase chain reaction (PCR), and Western blot was used to detect the protein expression of P2X7R. The typical potential characters of ADSCs were verified. In chondrocytes or OA tissues, the miR-373 expression level was decreased, but the P2X7R expression was increased. IL-1β stimulation increased the level of inflammatory factors in OA chondrocytes, and ADSCs co-cultured with IL-1β-stimulated chondrocytes decreased the inflammation. OA chondrocytes transfected with the miR-373 inhibitor increased the inflammation level. The miR-373 mimic suppressed the inflammation by targeting P2X7R and regulated its expression, while its effect was reversed by overexpression of P2X7R. IL-1β induced inflammation in OA chondrocytes, while ADSCs seemed to inhibit the expression of P2X7R that was regulated by miR-373 and involved in the anti-inflammatory process in OA.
Seo-wha Choi, Seul-bee Lee, Yeon-ju Na, Sun-geum Jeung, and Soo Young Kim
Mol. Cells 2017; 40(3): 230-242 https://doi.org/10.14348/molcells.2017.0002Abstract : In the Arabidopsis genome, approximately 80 MAP3Ks (mitogen-activated protein kinase kinase kinases) have been identified. However, only a few of them have been characterized, and the functions of most MAP3Ks are largely unknown. In this paper, we report the function of MAP3K16 and several other MAP3Ks, MAP3K14/15/17/18, whose expression is salt-inducible. We prepared