TOP

Archives

Archives
Previous​ Next
  • MinireviewMarch 31, 2017

    32 1014 3857

    Signaling Pathways Controlling Microglia Chemotaxis

    Yang Fan, Lirui Xie, and Chang Y. Chung

    Mol. Cells 2017; 40(3): 163-168 https://doi.org/10.14348/molcells.2017.0011
    Abstract

    Abstract : Microglia are the primary resident immune cells of the central nervous system (CNS). They are the first line of defense of the brain’s innate immune response against infection, injury, and diseases. Microglia respond to extracellular signals and engulf unwanted neuronal debris by phagocytosis, thereby maintaining normal cellular homeostasis in the CNS. Pathological stimuli such as neuronal injury induce transformation and activation of resting microglia with ramified morphology into a motile amoeboid form and activated microglia chemotax toward lesion site. This review outlines the current research on microglial activation and chemotaxis.

  • MinireviewMarch 31, 2017

    0 398 1378
    Abstract

    Abstract : Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development.

  • ArticleMarch 31, 2017

    13 481 1442

    Transcription Factor OsDOF18 Controls Ammonium Uptake by Inducing Ammonium Transporters in Rice Roots

    Yunfei Wu, Wenzhu Yang, Jinhuan Wei, Hyeryung Yoon, and Gynheung An

    Mol. Cells 2017; 40(3): 178-185 https://doi.org/10.14348/molcells.2017.2261
    Abstract

    Abstract : Nitrogen is one of the most important mineral elements for plant growth. We studied the functional roles of Oryza sativa DNA BINDING WITH ONE FINGER 18 (OsDOF18) in controlling ammonium uptake. The growth of null mutants of OsDOF18 was retarded in a medium containing ammonium as the sole nitrogen source. In contrast, those mutants grew normally in a medium with nitrate as the sole nitrogen source. The gene expression was induced by ammonium but not by nitrate. Uptake of ammonium was lower in osdof18 mutants than in the wild type, while that of nitrate was not affected by the mutation. This indicated that OsDOF18 is involved in regulating ammonium transport. Among the 10 ammonium transporter genes examined here, expression of OsAMT1;1, OsAMT1;3, OsAMT2;1, and OsAMT4;1 was reduced in osdof18 mutants, demonstrating that the ammonium transporter genes function downstream of OsDOF18. Genes for nitrogen assimilation were also affected in the mutants. These results provide evidence that OsDOF18 mediates ammonium transport and nitrogen distribution, which then affects nitrogen use efficiency.

  • ArticleMarch 31, 2017

    2 462 877

    A Role of Central NELL2 in the Regulation of Feeding Behavior in Rats

    Jin Kwon Jeong, Jae Geun Kim, Han Rae Kim, Tae Hwan Lee, Jeong Woo Park, and Byung Ju Lee

    Mol. Cells 2017; 40(3): 186-194 https://doi.org/10.14348/molcells.2017.2278
    Abstract

    Abstract : A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. In situ hybridization and an im-munohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus. To investigate the effect of NELL2 on feeding behavior, 2 nmole of antisense NELL2 oligodeoxynucleotide was administered into the lateral ventricle of adult male rat brains for 6 consecutive days, and changes in daily body weight, food, and water intake were monitored. Metabolic state-dependent NELL2 expression in the hypothalamus was tested in vivo using a fasting model. NELL2 was noticeably expressed in the hypothalamic nuclei controlling feeding behavior. Furthermore, all arcuatic POMC and NPY positive neurons produced NELL2. The NELL2 gene expression in the hypothalamus was up-regulated by fasting. However, NELL2 did not affect POMC and NPY gene expression in the hypothalamus. A blockade of NELL2 production in the hypothalamus led to a reduction in daily food intake, followed by a loss in body weight without a change in daily water intake in normal diet condition. NELL2 did not affect short-term hunger dependent appetite behavior. Our data suggests that hypothalamic NELL2 is associated with appetite behavior, and thus central NELL2 could be a new therapeutic target for obesity.

  • ArticleMarch 31, 2017

    7 411 857

    MiR-186 Inhibited Migration of NSCLC via Targeting cdc42 and Effecting EMT Process

    Ying Dong, Xintian Jin, Zhiqiang Sun, Yueming Zhao, and Xianjing Song

    Mol. Cells 2017; 40(3): 195-201 https://doi.org/10.14348/molcells.2017.2291
    Abstract

    Abstract : In this study, qRT-PCR was employed to identify that miR-186 expression level in NSCLC tissues are highly associated with lymph node metastasis. In addition, through the application of western blotting, luciferase assay and qRT-PCR, it was found that miR-186 targeted 3′UTR of cdc42 mRNA and down-regulated cdc42 protein level in a post-transcriptional manner. Transwell assay indicated that cdc42 partially reversed the effect of miR-186 mimics. Besides, miR-186 was proved to regulate EMT by influencing biomarkers of this process and cell adhesion ability. Thus, miR-186 is a potential target for NSCLC therapy. miR-186 is proposed to be one of tumor-suppressors and may serve as a therapeutic target in NSCLC treatment.

  • ArticleMarch 31, 2017

    6 410 1212
    Abstract

    Abstract : The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus (HCV) RNA genome is a multifunctional phosphoprotein. To analyse the influence of NS5A on apoptosis, we established an Hep-NS5A cell line (HepG2 cells that stably express NS5A) and induced apoptosis using tumour necrosis factor (TNF)-α. We utilised the MTT assay to detect cell viability, real-time quantitative polymerase chain reaction and Western blot to analyse gene and protein expression, and a luciferase reporter gene experiment to investigate the targeted regulatory relationship. Chromatin immunoprecipitation was used to identify the combination of NF-κB and miR-503. We found that overexpression of NS5A inhibited TNF-αinduced hepatocellular apoptosis via regulating miR-503 expression. The cell viability of the TNF-α induced Hep-mock cells was significantly less than the viability of the TNF-α induced Hep-NS5A cells, which demonstrates that NS5A inhibited TNF-α-induced HepG2 cell apoptosis. Under TNF-α treatment, miR-503 expression was decreased and cell viability and B-cell lymphoma 2 (bcl-2) expression were increased in the Hep-NS5A cells. Moreover, the luciferase reporter gene experiment verified that bcl-2 was a direct target of miR-503, NS5A inhibited TNF-α-induced NF-κB activation and NF-κB regulated miR-503 transcription by combining with the miR-503 promoter. After the Hep-NS5A cells were transfected with miR-503 mimics, the data indicated that the mimics could reverse TNF-α-induced cell apoptosis and blc-2 expression. Collectively, our findings suggest a possible molecular mechanism that may contribute to HCV treatment in which NS5A inhibits NF-κB activation to decrease miR-503 expression and increase bcl-2 expression, which leads to a decrease in hepatocellular apoptosis.

  • ArticleMarch 31, 2017

    6 424 1055

    Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

    Hongying Zhao, Jun Zhang, Haiyu Shao, Jianwen Liu, Mengran Jin, Jinping Chen, and Yazeng Huang

    Mol. Cells 2017; 40(3): 211-221 https://doi.org/10.14348/molcells.2017.2303
    Abstract

    Abstract : Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the TGFβ1/Smad4 pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the TGFβ1-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that TGFβ1/Smad4 signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

  • ArticleMarch 31, 2017

    6 387 1268
    Abstract

    Abstract : Adipose-derived stem cells (ADSCs) were previously considered to have an anti-inflammatory effect, and Interleukin-1β (IL-1β) was found to be a pro-inflammatory factor in chondrocytes, but the mechanism underlying ADSCs and IL-1β is unclear. In this study, we investigate whether P2X7 receptor (P2X7R) signalling, regulated by microRNA 373 (miR-373), was involved in the ADSCs and IL-1β mediated inflammation in osteoarthritis (OA). Chondrocytes were collected from 20 OA patients and 20 control participants, and ADSCs were collected from patients who had undergone abdominal surgery. The typical surface molecules of ASDCs were detected by flow cytometry. The level of nitric oxide (NO) was determined by Griess reagent. Concentrations of prostaglandin E2 (PGE2), interleukin 6 (IL-6), matrix metallopeptidase 3 (MMP-3) were detected by enzyme-linked immunosorbent assay (ELISA). The expressions of IL-6, MMP-3, miR-373 and P2X7R were determined by real-time polymerase chain reaction (PCR), and Western blot was used to detect the protein expression of P2X7R. The typical potential characters of ADSCs were verified. In chondrocytes or OA tissues, the miR-373 expression level was decreased, but the P2X7R expression was increased. IL-1β stimulation increased the level of inflammatory factors in OA chondrocytes, and ADSCs co-cultured with IL-1β-stimulated chondrocytes decreased the inflammation. OA chondrocytes transfected with the miR-373 inhibitor increased the inflammation level. The miR-373 mimic suppressed the inflammation by targeting P2X7R and regulated its expression, while its effect was reversed by overexpression of P2X7R. IL-1β induced inflammation in OA chondrocytes, while ADSCs seemed to inhibit the expression of P2X7R that was regulated by miR-373 and involved in the anti-inflammatory process in OA.

  • ArticleMarch 31, 2017

    2 523 1299

    Arabidopsis MAP3K16 and Other Salt-Inducible MAP3Ks Regulate ABA Response Redundantly

    Seo-wha Choi, Seul-bee Lee, Yeon-ju Na, Sun-geum Jeung, and Soo Young Kim

    Mol. Cells 2017; 40(3): 230-242 https://doi.org/10.14348/molcells.2017.0002
    Abstract

    Abstract : In the Arabidopsis genome, approximately 80 MAP3Ks (mitogen-activated protein kinase kinase kinases) have been identified. However, only a few of them have been characterized, and the functions of most MAP3Ks are largely unknown. In this paper, we report the function of MAP3K16 and several other MAP3Ks, MAP3K14/15/17/18, whose expression is salt-inducible. We prepared MAP3K16 overexpression (OX) lines and analyzed their phenotypes. The result showed that the transgenic plants were ABA-insensitive during seed germination and cotyledon greening stage but their root growth was ABA-hypersensitive. The OX lines were more susceptible to water-deficit condition at later growth stage in soil. A MAP3K16 knockout (KO) line, on the other hand, exhibited opposite phenotypes. In similar transgenic analyses, we found that MAP3K14/15/17/18 OX and KO lines displayed similar phenotypes to those of MA3K16, suggesting the functional redundancy among them. MAP3K16 possesses in vitro kinase activity, and we carried out two-hybrid analyses to identify MAP3K16 substrates. Our results indicate that MAP3K16 interacts with MKK3 and the negative regulator of ABA response, ABR1, in yeast. Furthermore, MAP3K16 recombinant protein could phosphorylate MKK3 and ABR1, suggesting that they might be MAP3K16 substrates. Collectively, our results demonstrate that MAP3K16 and MAP3K14/15/17/18 are involved in ABA response, playing negative or positive roles depending on developmental stage and that MAP3K16 may function via MKK3 and ABR1.

Mol. Cells
Mar 31, 2023 Vol.46 No.3, pp. 131~189
COVER PICTURE
The physiologically important cytoprotective signaling in normal cells (background area in turquoise) mediated by NRF2 (blue chain) is often hijacked by cancer cells (red ball) in the tumor microenvironment (yellow area). However, the differential roles of NRF2 throughout the multistage carcinogenesis remains largely unresolved (white-colored overlapping misty areas).

Archives

Molecules and Cells

eISSN 0219-1032
qr-code Download