TOP

Archives

Archives
Previous​ Next
  • MinireviewOctober 31, 2015

    13 953 2874
    Abstract

    Abstract : It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCFTIR1/AFB) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCFTIR1/AFB auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

  • MinireviewOctober 31, 2015

    63 1335 3512

    Structural Studies of G Protein-Coupled Receptors

    Dandan Zhang, Qiang Zhao, and Beili Wu

    Mol. Cells 2015; 38(10): 836-842 https://doi.org/10.14348/molcells.2015.0263

    Abstract : G protein-coupled receptors (GPCRs) constitute the largest and the most physiologically important membrane protein family that recognizes a variety of environmental stimuli, and are drug targets in the treatment of numerous diseases. Recent progress on GPCR structural studies shed light on molecular mechanisms of GPCR ligand recognition, activation and allosteric modulation, as well as structural basis of GPCR dimerization. In this review, we will discuss the structural features of GPCRs and structural insights of different aspects of GPCR biological functions.

  • ArticleOctober 31, 2015

    14 482 1057
    Abstract

    Abstract : The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.

  • ArticleOctober 31, 2015

    21 891 1124
    Abstract

    Abstract : Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

  • ArticleOctober 31, 2015

    5 628 929

    Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct

    Jing Guo, Hongjuan He, Qi Liu, Fengwei Zhang, Jie Lv, Tiebo Zeng, Ning Gu, and Qiong Wu

    Mol. Cells 2015; 38(10): 859-865 https://doi.org/10.14348/molcells.2015.0098
    Abstract

    Abstract : Most imprinted genes are concerned with embryonic development, especially placental development. Here, we identified a placenta-specific imprinted gene Qpct. Our results show that Qpct is widely expressed during early embryonic development and can be detected in the telecephalon, midbrain, and rhombencephalon at E9.5?E11.5. Moreover, Qpct is strikingly expressed in the brain, lung and liver in E15.5. Expression signals for Qpct achieved a peak at E15.5 during placental development and were only detected in the labyrinth layer in E15.5 placenta. ChIP assay results suggest that the modification of histone H3K4me3 can result in maternal activating of Qpct.

  • ArticleOctober 31, 2015

    32 909 1424

    Physiological Functions of the COPI Complex in Higher Plants

    Hee-Kyung Ahn, Yong Won Kang, Hye Min Lim, Inhwan Hwang, and Hyun-Sook Pai

    Mol. Cells 2015; 38(10): 866-875 https://doi.org/10.14348/molcells.2015.0115
    Abstract

    Abstract : COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed α-, β-, β′-, γ-, δ-, ε-, and ζ-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The β′-, γ-, and δ-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of β′-, γ-, and δ-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of β′-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.

  • ArticleOctober 31, 2015

    12 1406 1063

    N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons

    Md. Ariful Islam, Syeda Ridita Sharif, HyunSook Lee, and Il Soo Moon

    Mol. Cells 2015; 38(10): 876-885 https://doi.org/10.14348/molcells.2015.0120
    Abstract

    Abstract : N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of ‘DYNLRB1 (74?96)’, a small peptide derived from DYNLRB1’s C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.

  • ArticleOctober 31, 2015

    14 1455 1445

    NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

    Qihui Liu, Yuan Tian, Xiangfeng Zhao, Haifeng Jing, Qi Xie, Peng Li, Dong Li, Dongmei Yan, and Xun Zhu

    Mol. Cells 2015; 38(10): 886-894 https://doi.org/10.14348/molcells.2015.0125
    Abstract

    Abstract : Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-Gu?rin) activates disabled na?ve macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1).The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-1β), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-β) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.

  • ArticleOctober 31, 2015

    20 796 1268

    PGC-Enriched miRNAs Control Germ Cell Development

    Jinhyuk Bhin, Hoe-Su Jeong, Jong Soo Kim, Jeong Oh Shin, Ki Sung Hong, Han-Sung Jung, Changhoon Kim, Daehee Hwang, and Kye-Seong Kim

    Mol. Cells 2015; 38(10): 895-903 https://doi.org/10.14348/molcells.2015.0146
    Abstract

    Abstract : Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.

  • ArticleOctober 31, 2015

    22 987 1196
    Abstract

    Abstract : Negative regulator of reactive oxygen species (NRROS) is known to repress ROS generation in phagocytes. In this study, we examined the roles of NRROS in both osteoclasts and osteoblasts. Our results demonstrate that NRROS negatively regulates the differentiation of osteoclasts, but not osteoblasts. Further, overexpression of NRROS in osteoclast precursor cells attenuates RANKL-induced osteoclast differentiation. Conversely, osteoclast differentiation is enhanced upon siRNA-mediated knockdown of NRROS. Additionally, NRROS attenuates RANKL-induced NF-κB activation, as well as degradation of the NOX1 and NOX2 proteins, which are required for ROS generation. Based on our observations, we present NRROS as a novel negative regulator of RANKL-induced osteoclastogenesis.

Mol. Cells
Nov 30, 2023 Vol.46 No.11, pp. 655~725
COVER PICTURE
Kim et al. (pp. 710-724) demonstrated that a pathogen-derived Ralstonia pseudosolanacearum type III effector RipL delays flowering time and enhances susceptibility to bacterial infection in Arabidopsis thaliana. Shown is the RipL-expressing Arabidopsis plant, which displays general dampening of the transcriptional program during pathogen infection, grown in long-day conditions.

Archives

Molecules and Cells

eISSN 0219-1032
qr-code Download