Top

Archives

Archives
Previous​ Next
  • MinireviewOctober 31, 2014

    26 443 1942

    Neural Transcription Factors: from Embryos to Neural Stem Cells

    Hyun-Kyung Lee, Hyun-Shik Lee, and Sally A. Moody

    Mol. Cells 2014; 37(10): 705-712 https://doi.org/10.14348/molcells.2014.0227
    Abstract

    Abstract : The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.

  • MinireviewOctober 31, 2014

    14 398 1306
    Abstract

    Abstract : Alteration in chromosome numbers and structures instigate and foster massive genetic instability. As Boveri has seen a hundred years ago (Boveri, 1914; 2008), aneuploidy is hallmark of many cancers. However, whether aneuploidy is the cause or the result of cancer is still at debate. The molecular mechanism behind aneuploidy includes the chromo-some mis-segregation in mitosis by the compromise of spindle assembly checkpoint (SAC). SAC is an elaborate network of proteins, which monitor that all chromosomes are bipolarly attached with the spindles. Therefore, the weakening of the SAC is the major reason for chromosome number instability, while complete compromise of SAC results in detrimental death, exemplified in natural abortion in embryonic stage. Here, I will review on the recent progress on the understanding of chromosome mis-segregation and cancer, based on the comparison of different mouse models of BubR1, the core component of SAC.

  • Research ArticleOctober 31, 2014

    9 281 460
    Abstract

    Abstract : The γ-Aminobutyric acid (GABA) that is found in prokaryotic and eukaryotic organisms has been used in various ways as a signaling molecule or a significant component generating metabolic energy under conditions of nutrient limitation or stress, through GABA catabolism. Succinic semialdehyde dehydrogenase (SSADH) catalyzes the oxidation of succinic semialdehyde to succinic acid in the final step of GABA catabolism. Here, we report the catalytic properties and two crystal structures of SSADH from Streptococcus pyogenes (SpSSADH) regarding its cofactor preference. Kinetic analysis showed that SpSSADH prefers NADP+ over NAD+ as a hydride acceptor. Moreover, the structures of SpSSADH were determined in an apo-form and in a binary complex with NADP+ at 1.6 ? and 2.1 ? resolutions, respectively. Both structures of SpSSADH showed dimeric conformation, containing a single cysteine residue in the catalytic loop of each subunit. Further structural analysis and sequence comparison of SpSSADH with other SSADHs revealed that Ser158 and Tyr188 in SpSSADH participate in the stabilization of the 2’-phosphate group of adenine-side ribose in NADP+. Our results provide structural insights into the cofactor preference of SpSSADH as the gram-positive bacterial SSADH.

  • Research ArticleOctober 31, 2014

    5 318 836

    Metabolic Engineering of Rational Screened Saccharopolyspora spinosa for the Enhancement of Spinosyns A and D Production

    Amit Kumar Jha, Anaya Raj Pokhrel, Amit Kumar Chaudhary, Seong-Whan Park, Wan Je Cho, and Jae Kyung Sohng

    Mol. Cells 2014; 37(10): 727-733 https://doi.org/10.14348/molcells.2014.0168
    Abstract

    Abstract : Spinosyns A and D are potent ingredient for insect control with exceptional safety to non-target organisms. It consists of a 21-carbon tetracyclic lactone with forosamine and tri-O-methylated rhamnose which are derived from S-adenosylmethionine. Although previous studies have revealed the involvement of metK1 (S-adenosylmethionine synthetase), rmbA (glucose-1-phosphate thymidylyltransferase), and rmbB (TDP-D-glucose-4, 6-dehydratase) in the biosynthesis of spinosad, expression of these genes into rational screened Saccharopolyspora spinosa (S. spinosa MUV) has not been elucidated till date. In the present study, S. spinosa MUV was developed to utilize for metabolic engineering. The yield of spinosyns A and D in S. spinosa MUV was 244 mg L?1 and 129 mg L?1, which was 4.88-fold and 4.77-fold higher than that in the wild-type (50 mg L?1 and 27 mg L?1), respectively. To achieve the better production; positive regulator metK1-sp, rmbA and rmbB genes from Streptomyces peucetius, were expressed and co-expressed in S. spinosa MUV under the control of strong ermE* promoter, using an integration vector pSET152 and expression vector pIBR25, respectively. Herewith, the genetically engineered strain of S. spinosa MUV, produce spinosyns A and D up to 372/217 mg L?1 that is 7.44/8.03-fold greater than that of wild type. This result demonstrates the use of metabolic engineering on rationally developed high producing natural variants for the production.

  • Research ArticleOctober 31, 2014

    24 357 1128
    Abstract

    Abstract : Histone modifications on major transcription factor target genes are one of the major regulatory mechanisms controlling adipogenesis. Plant homeodomain finger 2 (PHF2) is a Jumonji domain-containing protein and is known to demethylate the histone H3K9, a repressive gene marker. To better understand the function of PHF2 in adipocyte differentiation, we constructed stable PHF2 knock-down cells by using the mouse pre-adipocyte cell line 3T3-L1. When induced with adipogenic media, PHF2 knock-down cells showed reduced lipid accumulation compared to control cells. Differential expression using a cDNA microarray revealed significant reduction of metabolic pathway genes in the PHF2 knock-down cell line after differentiation. The reduced expression of major transcription factors and adipokines was confirmed with reverse transcription- quantitative polymerase chain reaction and Western blotting. We further performed co-immunoprecipitation analysis of PHF2 with four major adipogenic transcription factors, and we found that CCATT/enhancer binding protein (C/EBP)α and C/EBPδ physically interact with PHF2. In addition, PHF2 binding to target gene promoters was confirmed with a chromatin immunoprecipitation experiment. Finally, histone H3K9 methylation markers on the PHF2-binding sequences were increased in PHF2 knock-down cells after differentiation. Together, these results demonstrate that PHF2 histone demethylase controls adipogenic gene expression during differentiation.

  • Research ArticleOctober 31, 2014

    37 425 1112

    Identification of DNA Aptamers toward Epithelial Cell Adhesion Molecule via Cell-SELEX

    Ji Won Kim, Eun Young Kim, Sun Young Kim, Sang Kyung Byun, Dasom Lee, Kyoung-Jin Oh, Won Kon Kim, Baek Soo Han, Seung-Wook Chi, Sang Chul Lee, and Kwang-Hee Bae

    Mol. Cells 2014; 37(10): 742-746 https://doi.org/10.14348/molcells.2014.0208
    Abstract

    Abstract : The epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is specifically detected in most adenocarcinomas and cancer stem cells. In this study, we performed a Cell systematic evolution of ligands by exponential enrichment (SELEX) experiment to isolate the aptamers against EpCAM. After seven round of Cell SELEX, we identified several aptamer candidates. Among the selected aptamers, EP166 specifically binds to cells expressing EpCAM with an equilibrium dissociation constant (Kd) in a micromolar range. On the other hand, it did not bind to negative control cells. Moreover, EP166 binds to J1ES cells, a mouse embryonic stem cell line. Therefore, the isolated aptamers against EpCAM could be used as a stem cell marker or in other applications in both stem cell and cancer studies.

  • Research ArticleOctober 31, 2014

    18 194 732

    PKCβ Positively Regulates RANKL-Induced Osteoclastogenesis by Inactivating GSK-3β

    Jihye Shin, Hyunduk Jang, Jingjing Lin, and Soo Young Lee

    Mol. Cells 2014; 37(10): 747-752 https://doi.org/10.14348/molcells.2014.0220
    Abstract

    Abstract : Protein kinase C (PKC) family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. However, the role of PKC in receptor activator of NF-κB ligand (RANKL) signaling has remained elusive. We now demonstrate that PKCβ acts as a positive regulator which inactivates glycogen synthase kinase-3β (GSK-3β) and promotes NFATc1 induction during RANKL-induced osteoclastogenesis. Among PKCs, PKCβ expression is increased by RANKL. Pharmacological inhibition of PKCβ decreased the formation of osteoclasts which was caused by the inhibition of NFATc1 induction. Importantly, the phosphorylation of GSK-3β was decreased by PKCβ inhibition. Likewise, down-regulation of PKCβ by RNA interference suppressed osteoclast differentiation, NFATc1 induction, and GSK-3β phosphorylation. The administration of PKC inhibitor to the RANKL-injected mouse calvaria efficiently protected RANKL-induced bone destruction. Thus, the PKCβ pathway, leading to GSK-3β inactivation and NFATc1 induction, has a key role in the differentiation of osteoclasts. Our results also provide a further rationale for PKCβ’s therapeutic targeting to treat inflammation-related bone diseases.

  • Research ArticleOctober 31, 2014

    2 341 748

    The Unique Mechanism of SNX9 BAR Domain for Inducing Membrane Tubulation

    Joohyun Park, Haiyan Zhao, and Sunghoe Chang

    Mol. Cells 2014; 37(10): 753-758 https://doi.org/10.14348/molcells.2014.0228
    Abstract

    Abstract : Sorting nexin 9 (SNX9) is a member of the sorting nexin family of proteins and plays a critical role in clathrin-mediated endocytosis. It has a Bin-Amphiphysin-Rvs (BAR) domain which can form a crescent-shaped homodimer structure that induces deformation of the plasma membrane. While other BAR-domain containing proteins such as amphiphysin and endophilin have an amphiphatic helix in front of the BAR domain which plays a critical role in membrane penetration, SNX9 does not. Thus, whether and how SNX9 BAR domain could induce the deformation of the plasma membrane is not clear. The present study identified the internal putative amphiphatic stretch in the 1st α-helix of the SNX9 BAR domain and proved that together with the N-terminal helix (H0) region, this internal putative amphiphatic stretch is critical for inducing membrane tubulation. Therefore, our study shows that SNX9 uses a unique mechanism to induce the tubulation of the plasma membrane which mediates proper membrane deformation during clathrin-mediated endocytosis.

  • Research ArticleOctober 31, 2014

    26 395 904

    NDRG2 Controls COX-2/PGE2-Mediated Breast Cancer Cell Migration and Invasion

    Myung-Jin Kim, Hak-Su Kim, Soo-Hwan Lee, Young Yang, Myeong-Sok Lee, and Jong-Seok Lim

    Mol. Cells 2014; 37(10): 759-765 https://doi.org/10.14348/molcells.2014.0232
    Abstract

    Abstract : N-myc downstream-regulated gene 2 (NDRG2), which is known to have tumor suppressor functions, is frequently down-regulated in breast cancers and potentially involved in preventing the migration and invasion of malignant tumor cells. In the present study, we examined the inhibitory effects of NDRG2 overexpression, specifically focusing on the role of cyclooxygenase-2 (COX-2) in the migration of breast cancer cells. NDRG2 overexpression in MDA-MB-231 cells inhibited the expression of the COX-2 mRNA and protein, the transcriptional activity of COX-2, and prostaglandin E2 (PGE2) production, which were induced by a treatment with phorbol-12-myristate-13-acetate (PMA). Nuclear transcription factor-κB (NF-κB) signaling attenuated by NDRG2 expression resulted in a decrease in PMA-induced COX-2 expression. Interestingly, the inhibition of COX-2 strongly suppressed PMA-stimulated migration and invasion in MDA-MB-231-NDRG2 cells. Moreover, siRNA-mediated knockdown of NDRG2 in MCF7 cells increased the COX-2 mRNA and protein expression levels and the PMA-induced COX-2 expression levels. Consistent with these results, the migration and invasion of MCF7 cells treated with NDRG2 siRNA were significantly enhanced following treatment with PMA. Taken together, our data show that the inhibition of NF-κB signaling by NDRG2 expression is able to suppress cell migration and invasion through the down-regulation of COX-2 expression.

Mol. Cells
Sep 30, 2022 Vol.45 No.9
COVER PICTURE
The Target of Rapamycin Complex (TORC) is a central regulatory hub in eukaryotes, which is well conserved in diverse plant species, including tomato (Solanum lycopersicum). Inhibition of TORC genes (SlTOR, SlLST8, and SlRAPTOR) by VIGS (virus-induced gene silencing) results in early fruit ripening in tomato. The red/ orange tomatoes are early-ripened TORC-silenced fruits, while the green tomato is a control fruit. Top, left, control fruit (TRV2-myc); top, right, TRV2-SlLST8; bottom, left, TRV2-SlTOR; bottom, right, TRV2-SlRAPTOR(Choi et al., pp. 660-672).

Archives

Molecules and Cells

eISSN 0219-1032
qr-code Download