Subash Dhakal and Youngseok Lee
Abstract : Transient receptor potential (TRP) channels are nonselective cationic channels, conserved among flies to humans. Most TRP channels have well known functions in chemosensation, thermosensation, and mechanosensation. In addition to being sensing environmental changes, many TRP channels are also internal sensors that help maintain homeostasis. Recent improvements to analytical methods for genomics and metabolomics allow us to investigate these channels in both mutant animals and humans. In this review, we discuss three aspects of TRP channels, which are their role in metabolism, their functional characteristics, and their role in metabolic syndrome. First, we introduce each TRP channel superfamily and their particular roles in metabolism. Second, we provide evidence for which metabolites TRP channels affect, such as lipids or glucose. Third, we discuss correlations between TRP channels and obesity, diabetes, and mucolipidosis. The cellular metabolism of TRP channels gives us possible therapeutic approaches for an effective prophylaxis of metabolic syndromes.
Heonjong Han , Sangyoung Lee
, and Insuk Lee
Abstract : Gene set enrichment analysis (GSEA) is a popular tool to identify underlying biological processes in clinical samples using their gene expression phenotypes. GSEA measures the enrichment of annotated gene sets that represent biological processes for differentially expressed genes (DEGs) in clinical samples. GSEA may be suboptimal for functional gene sets; however, because DEGs from the expression dataset may not be functional genes
TaeIn Kang , Seung Joon Lee
, Younghee Kwon
, and Dongeun Park
Abstract : βPix is a guanine nucleotide exchange factor for the Rho family small GTPases, Rac1 and Cdc42. It is known to regulate focal adhesion dynamics and cell migration. However, the in vivo role of βPix is currently not well understood. Here, we report the production and characterization of βPix-KO mice. Loss of βPix results in embryonic lethality accompanied by abnormal developmental features, such as incomplete neural tube closure, impaired axial rotation, and failure of allantoischorion fusion. We also generated βPix-KO mouse embryonic fibroblasts (MEFs) to examine βPix function in mouse fibroblasts. βPix-KO MEFs exhibit decreased Rac1 activity, and defects in cell spreading and platelet-derived growth factor (PDGF)-induced ruffle formation and chemotaxis. The average size of focal adhesions is increased in βPix-KO MEFs. Interestingly, βPix-KO MEFs showed increased motility in random migration and rapid wound healing with elevated levels of MLC2 phosphorylation. Taken together, our data demonstrate that βPix plays essential roles in early embryonic development, cell spreading, and cell migration in fibroblasts.
Jun Bae Park , Hayeong Park, Jimin Son
, Sang-Jun Ha
, and Hyun-Soo Cho
Abstract : Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a core enzyme of the aerobic glycolytic pathway with versatile functions and is associated with cancer development. Recently, Kornberg et al. published the detailed correlation between GAPDH and di- or monomethyl fumarate (DMF or MMF), which are well-known GAPDH antagonists in the immune system. As an extension, herein, we report the crystal structure of MMF-bound human GAPDH at 2.29 Å. The MMF molecule is covalently linked to the catalytic Cys152 of human GAPDH, and inhibits the catalytic activity of the residue and dramatically reduces the enzymatic activity of GAPDH. Structural comparisons between NAD+-bound GAPDH and MMF-bound GAPDH revealed that the covalently linked MMF can block the binding of the NAD+ co-substrate due to steric hindrance of the nicotinamide portion of the NAD+ molecule, illuminating the specific mechanism by which MMF inhibits GAPDH. Our data provide insights into GAPDH antagonist development for GAPDH-mediated disease treatment.
Seong-Min Park , Eun-Hye Seo
, Dong-Hyuck Bae
, Sung Soo Kim
, Jina Kim
, Weiwei Lin
, Kyung-Hee Kim
, Jong Bae Park
, Yong Sung Kim
, Jinlong Yin
, and Seon-Young Kim
Abstract : Phosphoserine phosphatase (PSPH) is one of the key enzymes of the L-serine synthesis pathway. PSPH is reported to affect the progression and survival of several cancers in an L-serine synthesis-independent manner, but the mechanism remains elusive. We demonstrate that PSPH promotes lung cancer progression through a noncanonical L-serine-independent pathway. PSPH was significantly associated with the prognosis of lung cancer patients and regulated the invasion and colony formation of lung cancer cells. Interestingly, L-serine had no effect on the altered invasion and colony formation by PSPH. Upon measuring the phosphatase activity of PSPH on a serine-phosphorylated peptide, we found that PSPH dephosphorylated phospho-serine in peptide sequences. To identify the target proteins of PSPH, we analyzed the protein phosphorylation profile and the PSPH-interacting protein profile using proteomic analyses and found one putative target protein, IRS-1. Immunoprecipitation and immunoblot assays validated a specific interaction between PSPH and IRS-1 and the dephosphorylation of phospho-IRS-1 by PSPH in lung cancer cells. We suggest that the specific interaction and dephosphorylation activity of PSPH have novel therapeutic potential for lung cancer treatment, while the metabolic activity of PSPH, as a therapeutic target, is controversial.