TOP

Archives

Archives
Previous​ Next
  • MinireviewAugust 31, 2019

    0 881 1712

    Transient Receptor Potential Channels and Metabolism

    Subash Dhakal and Youngseok Lee

    Mol. Cells 2019; 42(8): 569-578 https://doi.org/10.14348/molcells.2019.0007
    Abstract

    Abstract : Transient receptor potential (TRP) channels are nonselective cationic channels, conserved among flies to humans. Most TRP channels have well known functions in chemosensation, thermosensation, and mechanosensation. In addition to being sensing environmental changes, many TRP channels are also internal sensors that help maintain homeostasis. Recent improvements to analytical methods for genomics and metabolomics allow us to investigate these channels in both mutant animals and humans. In this review, we discuss three aspects of TRP channels, which are their role in metabolism, their functional characteristics, and their role in metabolic syndrome. First, we introduce each TRP channel superfamily and their particular roles in metabolism. Second, we provide evidence for which metabolites TRP channels affect, such as lipids or glucose. Third, we discuss correlations between TRP channels and obesity, diabetes, and mucolipidosis. The cellular metabolism of TRP channels gives us possible therapeutic approaches for an effective prophylaxis of metabolic syndromes.

  • Research ArticleAugust 31, 2019

    0 418 974
    Abstract

    Abstract : Gene set enrichment analysis (GSEA) is a popular tool to identify underlying biological processes in clinical samples using their gene expression phenotypes. GSEA measures the enrichment of annotated gene sets that represent biological processes for differentially expressed genes (DEGs) in clinical samples. GSEA may be suboptimal for functional gene sets; however, because DEGs from the expression dataset may not be functional genes per se but dysregulated genes perturbed by bona fide functional genes. To overcome this shortcoming, we developed network-based GSEA (NGSEA), which measures the enrichment score of functional gene sets using the expression difference of not only individual genes but also their neighbors in the functional network. We found that NGSEA outperformed GSEA in identifying pathway gene sets for matched gene expression phenotypes. We also observed that NGSEA substantially improved the ability to retrieve known anti-cancer drugs from patient-derived gene expression data using drug-target gene sets compared with another method, Connectivity Map. We also repurposed FDA-approved drugs using NGSEA and experimentally validated budesonide as a chemical with anti-cancer effects for colorectal cancer. We, therefore, expect that NGSEA will facilitate both pathway interpretation of gene expression phenotypes and anti-cancer drug repositioning. NGSEA is freely available at www.inetbio.org/ngsea.

  • Research ArticleAugust 31, 2019

    0 252 306
    Abstract

    Abstract : βPix is a guanine nucleotide exchange factor for the Rho family small GTPases, Rac1 and Cdc42. It is known to regulate focal adhesion dynamics and cell migration. However, the in vivo role of βPix is currently not well understood. Here, we report the production and characterization of βPix-KO mice. Loss of βPix results in embryonic lethality accompanied by abnormal developmental features, such as incomplete neural tube closure, impaired axial rotation, and failure of allantoischorion fusion. We also generated βPix-KO mouse embryonic fibroblasts (MEFs) to examine βPix function in mouse fibroblasts. βPix-KO MEFs exhibit decreased Rac1 activity, and defects in cell spreading and platelet-derived growth factor (PDGF)-induced ruffle formation and chemotaxis. The average size of focal adhesions is increased in βPix-KO MEFs. Interestingly, βPix-KO MEFs showed increased motility in random migration and rapid wound healing with elevated levels of MLC2 phosphorylation. Taken together, our data demonstrate that βPix plays essential roles in early embryonic development, cell spreading, and cell migration in fibroblasts.

  • Research ArticleAugust 31, 2019

    0 324 389

    Structural Study of Monomethyl Fumarate-Bound Human GAPDH

    Jun Bae Park , Hayeong Park, Jimin Son , Sang-Jun Ha , and Hyun-Soo Cho

    Mol. Cells 2019; 42(8): 597-603 https://doi.org/10.14348/molcells.2019.0114
    Abstract

    Abstract : Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a core enzyme of the aerobic glycolytic pathway with versatile functions and is associated with cancer development. Recently, Kornberg et al. published the detailed correlation between GAPDH and di- or monomethyl fumarate (DMF or MMF), which are well-known GAPDH antagonists in the immune system. As an extension, herein, we report the crystal structure of MMF-bound human GAPDH at 2.29 Å. The MMF molecule is covalently linked to the catalytic Cys152 of human GAPDH, and inhibits the catalytic activity of the residue and dramatically reduces the enzymatic activity of GAPDH. Structural comparisons between NAD+-bound GAPDH and MMF-bound GAPDH revealed that the covalently linked MMF can block the binding of the NAD+ co-substrate due to steric hindrance of the nicotinamide portion of the NAD+ molecule, illuminating the specific mechanism by which MMF inhibits GAPDH. Our data provide insights into GAPDH antagonist development for GAPDH-mediated disease treatment.

  • Research ArticleAugust 31, 2019

    0 357 492

    Phosphoserine Phosphatase Promotes Lung Cancer Progression through the Dephosphorylation of IRS-1 and a Noncanonical L-Serine-Independent Pathway

    Seong-Min Park , Eun-Hye Seo , Dong-Hyuck Bae , Sung Soo Kim , Jina Kim , Weiwei Lin , Kyung-Hee Kim , Jong Bae Park , Yong Sung Kim , Jinlong Yin , and Seon-Young Kim

    Mol. Cells 2019; 42(8): 604-616 https://doi.org/10.14348/molcells.2019.0160
    Abstract

    Abstract : Phosphoserine phosphatase (PSPH) is one of the key enzymes of the L-serine synthesis pathway. PSPH is reported to affect the progression and survival of several cancers in an L-serine synthesis-independent manner, but the mechanism remains elusive. We demonstrate that PSPH promotes lung cancer progression through a noncanonical L-serine-independent pathway. PSPH was significantly associated with the prognosis of lung cancer patients and regulated the invasion and colony formation of lung cancer cells. Interestingly, L-serine had no effect on the altered invasion and colony formation by PSPH. Upon measuring the phosphatase activity of PSPH on a serine-phosphorylated peptide, we found that PSPH dephosphorylated phospho-serine in peptide sequences. To identify the target proteins of PSPH, we analyzed the protein phosphorylation profile and the PSPH-interacting protein profile using proteomic analyses and found one putative target protein, IRS-1. Immunoprecipitation and immunoblot assays validated a specific interaction between PSPH and IRS-1 and the dephosphorylation of phospho-IRS-1 by PSPH in lung cancer cells. We suggest that the specific interaction and dephosphorylation activity of PSPH have novel therapeutic potential for lung cancer treatment, while the metabolic activity of PSPH, as a therapeutic target, is controversial.

Mol. Cells
May 31, 2023 Vol.46 No.5, pp. 259~328
COVER PICTURE
The alpha-helices in the lamin filaments are depicted as coils, with different subdomains distinguished by various colors. Coil 1a is represented by magenta, coil 1b by yellow, L2 by green, coil 2a by white, coil 2b by brown, stutter by cyan, coil 2c by dark blue, and the lamin Ig-like domain by grey. In the background, cells are displayed, with the cytosol depicted in green and the nucleus in blue (Ahn et al., pp. 309-318).

Archives

Molecules and Cells

eISSN 0219-1032
qr-code Download