• MinireviewJune 30, 2021

    15 1859 1789

    Abstract : It has been more than a year since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged. Many studies have provided insights into the various aspects of the immune response in coronavirus disease 2019 (COVID-19). Especially for antibody treatment and vaccine development, humoral immunity to SARS-CoV-2 has been studied extensively, though there is still much that is unknown and controversial. Here, we introduce key discoveries on the humoral immune responses in COVID-19, including the immune dynamics of antibody responses and correlations with disease severity, neutralizing antibodies and their cross-reactivity, how long the antibody and memory B-cell responses last, aberrant autoreactive antibodies generated in COVID-19 patients, and the efficacy of currently available therapeutic antibodies and vaccines against circulating SARS-CoV-2 variants, and highlight gaps in the current knowledge.

  • MinireviewJune 30, 2021

    9 1192 1006

    Abstract : The recent appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people around the world and caused a global pandemic of coronavirus disease 2019 (COVID-19). It has been suggested that uncontrolled, exaggerated inflammation contributes to the adverse outcomes of COVID-19. In this review, we summarize our current understanding of the innate immune response elicited by SARS-CoV-2 infection and the hyperinflammation that contributes to disease severity and death. We also discuss the immunological determinants behind COVID-19 severity and propose a rationale for the underlying mechanisms.

  • MinireviewJune 30, 2021

    12 1888 1233

    Phenotypes and Functions of SARS-CoV-2-Reactive T Cells

    Min Kyung Jung and Eui-Cheol Shin

    Mol. Cells 2021; 44(6): 401-407

    Abstract : Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is an ongoing pandemic disease. SARS-CoV-2-specific CD4+ and CD8+ T-cell responses have been detected and characterized not only in COVID-19 patients and convalescents, but also unexposed individuals. Here, we review the phenotypes and functions of SARS-CoV-2-specific T cells in COVID-19 patients and the relationships between SARS-CoV-2-specific T-cell responses and COVID-19 severity. In addition, we describe the phenotypes and functions of SARS-CoV-2-specific memory T cells after recovery from COVID-19 and discuss the presence of SARS-CoV-2-reactive T cells in unexposed individuals and SARS-CoV-2-specific T-cell responses elicited by COVID-19 vaccines. A better understanding of T-cell responses is important for effective control of the current COVID-19 pandemic.

  • MinireviewJune 30, 2021

    5 1568 902

    Experimental Models for SARS-CoV-2 Infection

    Taewoo Kim , Jeong Seok Lee , and Young Seok Ju

    Mol. Cells 2021; 44(6): 377-383

    Abstract : Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a novel virus that causes coronavirus disease 2019 (COVID-19). To understand the identity, functional characteristics and therapeutic targets of the virus and the diseases, appropriate infection models that recapitulate the in vivo pathophysiology of the viral infection are necessary. This article reviews the various infection models, including Vero cells, human cell lines, organoids, and animal models, and discusses their advantages and disadvantages. This knowledge will be helpful for establishing an efficient system for defense against emerging infectious diseases.

  • MinireviewMay 31, 2021

    4 1195 967

    Abstract : An increasing number of studies have revealed an interaction between gut microbiota and tumors. The enrichment of specific bacteria strains in the intestines has been found to modulate tumor growth and influence the mechanisms of tumor treatment. Various bacteria are involved in modulating the effects of chemotherapeutic drugs currently used to treat patients with cancer, and they affect not only gastrointestinal tract tumors but also distant organ tumors. In addition, changes in the gut microbiota are known to be involved in the antitumor immune response as well as the modulation of the intestinal immune system. As a result, the gut microbiota plays an important role in modulating the efficacy of immune checkpoint inhibitors. Therefore, gut microbiota could be considered as an adjuvant treatment option with other cancer treatment or as another marker for predicting treatment response. In this review, we examine how gut microbiota affects cancer treatments.

  • MinireviewMay 31, 2021

    3 1060 1096

    Abstract : The advent of the major histocompatibility complex (MHC) multimer technology has led to a breakthrough in the quantification and analysis of antigen-specific T cells. In particular, this technology has dramatically advanced the measurement and analysis of CD8 T cells and is being applied more widely. In addition, the scope of application of MHC multimer technology is gradually expanding to other T cells such as CD4 T cells, natural killer T cells, and mucosal-associated invariant T cells. MHC multimer technology acts by complementing the T-cell receptor-MHC/peptide complex affinity, which is relatively low compared to antigen-antibody affinity, through a multivalent interaction. The application of MHC multimer technology has expanded to include various functions such as quantification and analysis of antigen-specific T cells, cell sorting, depletion, stimulation to replace antigen-presenting cells, and single-cell classification through DNA barcodes. This review aims to provide the latest knowledge of MHC multimer technology, which is constantly evolving, broaden understanding of this technology, and promote its widespread use.

  • MinireviewMay 31, 2021

    6 1086 693

    Innate Lymphoid Cells in Tissue Homeostasis and Disease Pathogenesis

    Jihyun Kim , Seungwon Ryu , and Hye Young Kim

    Mol. Cells 2021; 44(5): 301-309

    Abstract : Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. ILCs can be categorized into three groups on the basis of the transcription factors that direct their functions and the cytokines they produce. Notably, these functions parallel the effector functions of T lymphocytes. ILCs play a frontline role in host defense and tissue homeostasis by responding rapidly to environmental factors, conducting effector responses in a tissue-specific manner, and interacting with hematopoietic and non-hematopoietic cells throughout the body. Moreover, recent studies reveal that ILCs are involved in development of various inflammatory diseases, such as respiratory diseases, autoimmune diseases, or cancer. In this review, we discuss the recent findings regarding the biology of ILCs in health and inflammatory diseases.

  • MinireviewMay 31, 2021

    6 886 656

    Abstract : CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of na?ve Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein arginine-modifying enzymes in effector Th cells.

  • MinireviewMay 31, 2021

    8 1596 1308

    Development and Functions of Alveolar Macrophages

    Yeon Duk Woo , Dongjin Jeong , and Doo Hyun Chung

    Mol. Cells 2021; 44(5): 292-300

    Abstract : Macrophages residing in various tissue types are unique in terms of their anatomical locations, ontogenies, developmental pathways, gene expression patterns, and immunological functions. Alveolar macrophages (AMs) reside in the alveolar lumen of the lungs and serve as the first line of defense for the respiratory tract. The immunological functions of AMs are implicated in the pathogenesis of various pulmonary diseases such as allergic asthma, chronic obstructive pulmonary disorder (COPD), pulmonary alveolar proteinosis (PAP), viral infection, and bacterial infection. Thus, the molecular mechanisms driving the development and function of AMs have been extensively investigated. In this review article, we discuss the roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF)-β in AM development, and provide an overview of the anti-inflammatory and proinflammatory functions of AMs in various contexts. Notably, we examine the relationships between the metabolic status of AMs and their development processes and functions. We hope that this review will provide new information and insight into AM development and function.

  • MinireviewMay 31, 2021

    21 1699 1578

    Abstract : Tissue-resident macrophages play an important role in maintaining tissue homeostasis and innate immune defense against invading microbial pathogens. Brain-resident macrophages can be classified into microglia in the brain parenchyma and non-parenchymal brain macrophages, also known as central nervous system-associated or border-associated macrophages, in the brain-circulation interface. Microglia and non-parenchymal brain macrophages, including meningeal, perivascular, and choroid plexus macrophages, are mostly produced during embryonic development, and maintained their population by self-renewal. Microglia have gained much attention for their dual roles in the maintenance of brain homeostasis and the induction of neuroinflammation. In particular, diverse phenotypes of microglia have been increasingly identified under pathological conditions. Single-cell phenotypic analysis revealed that microglia are highly heterogenous and plastic, thus it is difficult to define the status of microglia as M1/M2 or resting/activated state due to complex nature of microglia. Meanwhile, physiological function of non-parenchymal brain macrophages remain to be fully demonstrated. In this review, we have summarized the origin and signatures of brain-resident macrophages and discussed the unique features of microglia, particularly, their phenotypic polarization, diversity of subtypes, and inflammasome responses related to neurodegenerative diseases.

  • MinireviewMay 31, 2021

    6 1203 1054

    MiT Family Transcriptional Factors in Immune Cell Functions

    Seongryong Kim , Hyun-Sup Song , Jihyun Yu , and You-Me Kim

    Mol. Cells 2021; 44(5): 342-355

    Abstract : The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

  • MinireviewMay 31, 2021

    1 841 902

    Current Understanding of the Roles of CD1a-Restricted T Cells in the Immune System

    Hyun Jung Yoo , Na Young Kim , and Ji Hyung Kim ,*

    Mol. Cells 2021; 44(5): 310-317

    Abstract : Cluster of differentiation 1 (CD1) is a family of cell-surface glycoproteins that present lipid antigens to T cells. Humans have five CD1 isoforms. CD1a is distinguished by the small volume of its antigen-binding groove and its stunted A′ pocket, its high and exclusive expression on Langerhans cells, and its localization in the early endosomal and recycling intracellular trafficking compartments. Its ligands originate from self or foreign sources. There are three modes by which the T-cell receptors of CD1a-restricted T cells interact with the CD1a:lipid complex: they bind to both the CD1a surface and the antigen or to only CD1a itself, which activates the T cell, or they are unable to bind because of bulky motifs protruding from the antigen-binding groove, which might inhibit autoreactive T-cell activation. Recently, several studies have shown that by producing TH2 or TH17 cytokines, CD1a-restricted T cells contribute to inflammatory skin disorders, including atopic dermatitis, psoriasis, allergic contact dermatitis, and wasp/bee venom allergy. They may also participate in other diseases, including pulmonary disorders and cancer, because CD1a-expressing dendritic cells are also located in non-skin tissues. In this mini-review, we discuss the current knowledge regarding the biology of CD1a-reactive T cells and their potential roles in disease.

Mol. Cells
Feb 28, 2023 Vol.46 No.2, pp. 69~129
The bulk tissue is a heterogeneous mixture of various cell types, which is depicted as a skein of intertwined threads with diverse colors each of which represents a unique cell type. Single-cell omics analysis untangles efficiently the skein according to the color by providing information of molecules at individual cells and interpretation of such information based on different cell types. The molecules that can be profiled at the individual cell by single-cell omics analysis includes DNA (bottom middle), RNA (bottom right), and protein (bottom left). This special issue reviews single-cell technologies and computational methods that have been developed for the single-cell omics analysis and how they have been applied to improve our understanding of the underlying mechanisms of biological and pathological phenomena at the single-cell level.

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.

Most Read

Editorial Office

Molecules and Cells

eISSN 0219-1032
qr-code Download