TOP

Minireview

  • MinireviewJanuary 31, 2023

    4 1859 618
    Abstract

    Abstract : Antisense oligonucleotide (ASO) technology has become an attractive therapeutic modality for various diseases, including Mendelian disorders. ASOs can modulate the expression of a target gene by promoting mRNA degradation or changing pre-mRNA splicing, nonsense-mediated mRNA decay, or translation. Advances in medicinal chemistry and a deeper understanding of post-transcriptional mechanisms have led to the approval of several ASO drugs for diseases that had long lacked therapeutic options. For instance, an ASO drug called nusinersen became the first approved drug for spinal muscular atrophy, improving survival and the overall disease course. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Although Trikafta and other CFTR-modulation therapies benefit most CF patients, there is a significant unmet therapeutic need for a subset of CF patients. In this review, we introduce ASO therapies and their mechanisms of action, describe the opportunities and challenges for ASO therapeutics for CF, and discuss the current state and prospects of ASO therapies for CF.

  • MinireviewJanuary 31, 2023

    2 1319 400

    Determinants of Functional MicroRNA Targeting

    Hyeonseo Hwang , Hee Ryung Chang , and Daehyun Baek

    Mol. Cells 2023; 46(1): 21-32 https://doi.org/10.14348/molcells.2023.2157
    Abstract

    Abstract : MicroRNAs (miRNAs) play cardinal roles in regulating biological pathways and processes, resulting in significant physiological effects. To understand the complex regulatory network of miRNAs, previous studies have utilized massivescale datasets of miRNA targeting and attempted to computationally predict the functional targets of miRNAs. Many miRNA target prediction tools have been developed and are widely used by scientists from various fields of biology and medicine. Most of these tools consider seed pairing between miRNAs and their mRNA targets and additionally consider other determinants to improve prediction accuracy. However, these tools exhibit limited prediction accuracy and high false positive rates. The utilization of additional determinants, such as RNA modifications and RNA-binding protein binding sites, may further improve miRNA target prediction. In this review, we discuss the determinants of functional miRNA targeting that are currently used in miRNA target prediction and the potentially predictive but unappreciated determinants that may improve prediction accuracy.

  • MinireviewJanuary 31, 2023

    1 1222 364

    Circular RNAs in and out of Cells: Therapeutic Usages of Circular RNAs

    Mingyu Ju , Dayeon Kim , Geurim Son , and Jinju Han

    Mol. Cells 2023; 46(1): 33-40 https://doi.org/10.14348/molcells.2023.2170
    Abstract

    Abstract : RNAs are versatile molecules that are primarily involved in gene regulation and can thus be widely used to advance the fields of therapeutics and diagnostics. In particular, circular RNAs which are highly stable, have emerged as strong candidates for use on next-generation therapeutic platforms. Endogenous circular RNAs control gene regulatory networks by interacting with other biomolecules or through translation into polypeptides. Circular RNAs exhibit cell-type specific expression patterns, which can be altered in tissues and body fluids depending on pathophysiological conditions. Circular RNAs that are aberrantly expressed in diseases can function as biomarkers or therapeutic targets. Moreover, exogenous circular RNAs synthesized in vitro can be introduced into cells as therapeutic molecules to modulate gene expression networks in vivo. Depending on the purpose, synthetic circular RNA sequences can either be identical to endogenous circular RNA sequences or artificially designed. In this review, we introduce the life cycle and known functions of intracellular circular RNAs. The current stage of endogenous circular RNAs as biomarkers and therapeutic targets is also described. Finally, approaches and considerations that are important for applying the available knowledge on endogenous circular RNAs to design exogenous circular RNAs for therapeutic purposes are presented.

  • MinireviewJanuary 31, 2023

    4 1564 522
    Abstract

    Abstract : The rapid development of mRNA vaccines has contributed to the management of the current coronavirus disease 2019 (COVID-19) pandemic, suggesting that this technology may be used to manage future outbreaks of infectious diseases. Because the antigens targeted by mRNA vaccines can be easily altered by simply changing the sequence present in the coding region of mRNA structures, it is more appropriate to develop vaccines, especially during rapidly developing outbreaks of infectious diseases. In addition to allowing rapid development, mRNA vaccines have great potential in inducing successful antigen-specific immunity by expressing target antigens in cells and simultaneously triggering immune responses. Indeed, the two COVID-19 mRNA vaccines approved by the U.S. Food and Drug Administration have shown significant efficacy in preventing infections. The ability of mRNAs to produce target proteins that are defective in specific diseases has enabled the development of options to treat intractable diseases. Clinical applications of mRNA vaccines/therapeutics require strategies to safely deliver the RNA molecules into targeted cells. The present review summarizes current knowledge about mRNA vaccines/ therapeutics, their clinical applications, and their delivery strategies.

  • MinireviewJanuary 31, 2023

    4 1593 541
    Abstract

    Abstract : Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3′ untranslated regions (3′UTRs) of the mRNA serve pivotal roles in posttranscriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3′UTR length variants. Alternative polyadenylation and alternative splicing are involved in diversifying 3′UTRs, which could act as a hidden layer of eukaryotic gene expression control. In this review, we summarize the functions and regulations of 3′UTRs and elaborate on the generation and functional consequences of 3′UTR diversity. Given that dynamic 3′UTR length control contributes to phenotypic complexity, dysregulated 3′UTR diversity might be relevant to disease development, including cancers. Thus, 3′UTR diversity in cancer could open exciting new research areas and provide avenues for novel cancer theragnostics.

  • MinireviewJanuary 31, 2023

    0 968 338

    Sequential Polyadenylation to Enable Alternative mRNA 3’ End Formation

    Yajing Hao , Ting Cai , Chang Liu , Xuan Zhang , and Xiang-Dong Fu

    Mol. Cells 2023; 46(1): 57-64 https://doi.org/10.14348/molcells.2023.2176
    Abstract

    Abstract : In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3′ end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3′ ends that may either alter protein coding sequence (CDS-APA) or create different lengths of 3′UTR (tandem-APA). As the CPA reaction is intimately associated with transcriptional termination, it has been widely assumed that APA is regulated cotranscriptionally. Isoforms terminated at different regions may have distinct RNA stability under different conditions, thus altering the ratio of APA isoforms. Such differential impacts on different isoforms have been considered as post-transcriptional APA, but strictly speaking, this can only be considered “apparent” APA, as the choice is not made during the CPA reaction. Interestingly, a recent study reveals sequential APA as a new mechanism for post-transcriptional APA. This minireview will focus on this new mechanism to provide insights into various documented regulatory paradigms.

  • MinireviewDecember 31, 2022

    1 1450 427

    Glyoxalase 1 as a Therapeutic Target in Cancer and Cancer Stem Cells

    Ji-Young Kim , Ji-Hye Jung , Seung-Joon Lee , Seon-Sook Han , and Seok-Ho Hong

    Mol. Cells 2022; 45(12): 869-876 https://doi.org/10.14348/molcells.2022.0109
    Abstract

    Abstract : Methylglyoxal (MG) is a dicarbonyl compound formed in cells mainly by the spontaneous degradation of the triose phosphate intermediates of glycolysis. MG is a powerful precursor of advanced glycation end products, which lead to strong dicarbonyl and oxidative stress. Although divergent functions of MG have been observed depending on its concentration, MG is considered to be a potential anti-tumor factor due to its cytotoxic effects within the oncologic domain. MG detoxification is carried out by the glyoxalase system. Glyoxalase 1 (Glo1), the ubiquitous glutathione-dependent enzyme responsible for MG degradation, is considered to be a tumor promoting factor due to it catalyzing the removal of cytotoxic MG. Indeed, various cancer types exhibit increased expression and activity of Glo1 that closely correlate with tumor cell growth and metastasis. Furthermore, mounting evidence suggests that Glo1 contributes to cancer stem cell survival. In this review, we discuss the role of Glo1 in the malignant progression of cancer and its possible use as a promising therapeutic target for tumor therapy. We also summarize therapeutic outcomes of Glo1 inhibitors as prospective treatments for the prevention of cancer.

  • MinireviewDecember 31, 2022

    0 1087 205

    Advances in Optical Tools to Study Taste Sensation

    Gha Yeon Park , Hyeyeong Hwang , and Myunghwan Choi

    Mol. Cells 2022; 45(12): 877-882 https://doi.org/10.14348/molcells.2022.0116

    Abstract : Taste sensation is the process of converting chemical identities in food into a neural code of the brain. Taste information is initially formed in the taste buds on the tongue, travels through the afferent gustatory nerves to the sensory ganglion neurons, and finally reaches the multiple taste centers of the brain. In the taste field, optical tools to observe cellular-level functions play a pivotal role in understanding how taste information is processed along a pathway. In this review, we introduce recent advances in the optical tools used to study the taste transduction pathways.

  • MinireviewNovember 30, 2022

    0 1125 304
    Abstract

    Abstract : Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.

  • MinireviewNovember 30, 2022

    12 1638 458
    Abstract

    Abstract : Caenorhabditis elegans has been used as a major model organism to identify genetic factors that regulate organismal aging and longevity. Insulin/insulin-like growth factor 1 (IGF- 1) signaling (IIS) regulates aging in many species, ranging from nematodes to humans. C. elegans is a nonpathogenic genetic nematode model, which has been extensively utilized to identify molecular and cellular components that function in organismal aging and longevity. Here, we review the recent progress in the role of IIS in aging and longevity, which involves direct regulation of protein and RNA homeostasis, stress resistance, metabolism and the activities of the endocrine system. We also discuss recently identified genetic factors that interact with canonical IIS components to regulate aging and health span in C. elegans. We expect this review to provide valuable insights into understanding animal aging, which could eventually help develop anti-aging drugs for humans.

  • MinireviewNovember 30, 2022

    5 1261 353
    Abstract

    Abstract : The field of extracellular vesicles (EVs) has expanded tremendously over the last decade. The role of cell-to-cell communication in neighboring or distant cells has been increasingly ascribed to EVs generated by various cells. Initially, EVs were thought to a means of cellular debris or disposal system of unwanted cellular materials that provided an alternative to autolysis in lysosomes. Intercellular exchange of information has been considered to be achieved by well-known systems such as hormones, cytokines, and nervous networks. However, most research in this field has searched for and found evidence to support paracrine or endocrine roles of EV, which inevitably leads to a new concept that EVs are synthesized to achieve their paracrine or endocrine purposes. Here, we attempted to verify the endocrine role of EV production and their contents, such as RNAs and bioactive proteins, from the regulation of biogenesis, secretion, and action mechanisms while discussing the current technical limitations. It will also be important to discuss how blood EV concentrations are regulated as if EVs are humoral endocrine machinery.

  • MinireviewOctober 31, 2022

    2 2024 493

    The Single-Cell Revelation of Thermogenic Adipose Tissue

    Yue Qi and Xiaoyan Hannah Hui

    Mol. Cells 2022; 45(10): 673-684 https://doi.org/10.14348/molcells.2022.0092
    Abstract

    Abstract : The past two decades have witnessed an upsurge in the appreciation of adipose tissue (AT) as an immuno-metabolic hub harbouring heterogeneous cell populations that collectively fine-tune systemic metabolic homeostasis. Technological advancements, especially single-cell transcriptomics, have offered an unprecedented opportunity for dissecting the sophisticated cellular networks and compositional dynamics underpinning AT remodelling. The “re-discovery” of functional brown adipose tissue dissipating heat energy in human adults has aroused tremendous interest in exploiting the mechanisms underpinning the engagement of AT thermogenesis for combating human obesity. In this review, we aim to summarise and evaluate the use of single-cell transcriptomics that contribute to a better appreciation of the cellular plasticity and intercellular crosstalk in thermogenic AT.

Mol. Cells
Nov 30, 2023 Vol.46 No.11, pp. 655~725
COVER PICTURE
Kim et al. (pp. 710-724) demonstrated that a pathogen-derived Ralstonia pseudosolanacearum type III effector RipL delays flowering time and enhances susceptibility to bacterial infection in Arabidopsis thaliana. Shown is the RipL-expressing Arabidopsis plant, which displays general dampening of the transcriptional program during pathogen infection, grown in long-day conditions.

Most KeyWord ?

What is Most Keyword?

  • It is most registrated keyword in articles at this journal during for 2 years.

Most Read

Editorial Office

Molecules and Cells

eISSN 0219-1032
qr-code Download