Molecules and Cells

Cited by CrossRef (47)

  1. Yijie Mao, Ling Yao, Xuejun Jiang, Golamaully Sumayyah, Zhen Zou, Qiying Yi, Chengzhi Chen. Knock-down of transcription factor skinhead-1 exacerbates arsenite-induced oxidative damage in Caenorhabditis elegans. Biometals 2021;34:675
    https://doi.org/10.1007/s10534-021-00303-2
  2. Adilya Rafikova, Queenie Hu, Terrance J Kubiseski. The SEM-4 Transcription Factor Is Required for Regulation of the Oxidative Stress Response in Caenorhabditis elegans . 2020;10:3379
    https://doi.org/10.1534/g3.120.401316
  3. Jingwei Zhao, An Zhu, Yuqing Sun, Wenjing Zhang, Tao Zhang, Yadong Gao, Danping Shan, Shuo Wang, Guojun Li, Kewu Zeng, Qi Wang. Beneficial effects of sappanone A on lifespan and thermotolerance in Caenorhabditis elegans. European Journal of Pharmacology 2020;888:173558
    https://doi.org/10.1016/j.ejphar.2020.173558
  4. Gilberto Garcia, Stefan Homentcovschi, Naame Kelet, Ryo Higuchi-Sanabria. Cytoskeleton. 2020.
    https://doi.org/10.1007/978-1-0716-1661-1_5
  5. Gee-Yoon Lee, Jooyeon Sohn, Seung-Jae V. Lee. Combinatorial Approach Using Caenorhabditis elegans and Mammalian Systems for Aging Research. Mol.Cells 2021;44:425
    https://doi.org/10.14348/molcells.2021.0080
  6. Daiheon Lee, Honggu Hwang, Jun-Sung Kim, Jongmin Park, Donghwan Youn, Duhwan Kim, Jungseok Hahn, Myungeun Seo, Haeshin Lee. VATA: A Poly(vinyl alcohol)- and Tannic Acid-Based Nontoxic Underwater Adhesive. ACS Appl. Mater. Interfaces 2020;12:20933
    https://doi.org/10.1021/acsami.0c02037
  7. Ning Yang, Renqiang Yuan, Dan You, Qianli Zhang, Jieran Wang, Hongyun Xuan, Liqin Ge. Gallol-based Constant Underwater Coating Adhesives for Severe Aqueous Conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021:127948
    https://doi.org/10.1016/j.colsurfa.2021.127948
  8. Katja R Kasimatis, Megan J Moerdyk-Schauwecker, Patrick C Phillips. Auxin-Mediated Sterility Induction System for Longevity and Mating Studies in Caenorhabditis elegans . 2018;8:2655
    https://doi.org/10.1534/g3.118.200278
  9. Heping Hui, Aiyi Xin, Haiyan Cui, Hui Jin, Xiaoyan Yang, Haoyue Liu, Bo Qin. Anti-aging effects on Caenorhabditis elegans of a polysaccharide, O-acetyl glucomannan, from roots of Lilium davidii var. unicolor Cotton. International Journal of Biological Macromolecules 2020;155:846
    https://doi.org/10.1016/j.ijbiomac.2020.03.206
  10. Rahul Pal, Saif Hameed, Parveen Kumar, Sarman Singh, Zeeshan Fatima. Understanding lipidomic basis of iron limitation induced chemosensitization of drug-resistant Mycobacterium tuberculosis. 3 Biotech 2019;9
    https://doi.org/10.1007/s13205-019-1645-4
  11. Grace H. Kim, Sierra Rosiana, Natalia V. Kirienko, Rebecca S. Shapiro. A Simple Nematode Infection Model for Studying Candida albicans Pathogenesis . Current Protocols in Microbiology 2020;59
    https://doi.org/10.1002/cpmc.114
  12. María Pilar de Torre, Rita Yolanda Cavero, María Isabel Calvo, José Luis Vizmanos. A Simple and a Reliable Method to Quantify Antioxidant Activity In Vivo. Antioxidants 2019;8:142
    https://doi.org/10.3390/antiox8050142
  13. Daniel P. Felker, Christine E. Robbins, Mark A. McCormick. Automation of C. elegans lifespan measurement. Translational Medicine of Aging 2020;4:1
    https://doi.org/10.1016/j.tma.2019.12.001
  14. Emily Machiela, Thomas Liontis, Dylan J. Dues, Paige D. Rudich, Annika Traa, Leslie Wyman, Corah Kaufman, Jason F. Cooper, Leira Lew, Saravanapriah Nadarajan, Megan M. Senchuk, Jeremy M. Van Raamsdonk. Disruption of mitochondrial dynamics increases stress resistance through activation of multiple stress response pathways. FASEB j. 2020;34:8475
    https://doi.org/10.1096/fj.201903235R
  15. S. Mion, B. Rémy, L. Plener, E. Chabrière, D. Daudé. Empêcher les bactéries de communiquer : diviser pour mieux soigner. Annales Pharmaceutiques Françaises 2018;76:249
    https://doi.org/10.1016/j.pharma.2018.02.004
  16. Sharda Sharma, Saif Hameed, Zeeshan Fatima. Lipidomic insights to understand membrane dynamics in response to vanillin in Mycobacterium smegmatis. Int Microbiol 2020;23:263
    https://doi.org/10.1007/s10123-019-00099-9
  17. Stephen A. Banse, Benjamin W. Blue, Kristin J. Robinson, Cody M. Jarrett, Patrick C. Phillips, Hongkyun Kim. The Stress-Chip: A microfluidic platform for stress analysis in Caenorhabditis elegans. PLoS ONE 2019;14:e0216283
    https://doi.org/10.1371/journal.pone.0216283
  18. Gábor Hajdú, Eszter Gecse, István Taisz, István Móra, Csaba Sőti. Toxic stress-specific cytoprotective responses regulate learned behavioral decisions in C. elegans. BMC Biol 2021;19
    https://doi.org/10.1186/s12915-021-00956-y
  19. Si-Yi Jin, Dang-Qing Li, Shan Lu, Lin-Tao Han, Da-Hui Liu, Zhuang Huang, Bi-Sheng Huang, Yan Cao. Ethanol extracts of Panax notoginseng increase lifespan and protect against oxidative stress in Caenorhabditis elegans via the insulin/IGF-1 signaling pathway. Journal of Functional Foods 2019;58:218
    https://doi.org/10.1016/j.jff.2019.04.031
  20. Inge E. Krabbendam, Birgit Honrath, Benjamin Dilberger, Eligio F. Iannetti, Robyn S. Branicky, Tammo Meyer, Bernard Evers, Frank J. Dekker, Werner J. H. Koopman, Julien Beyrath, Daniele Bano, Martina Schmidt, Barbara M. Bakker, Siegfried Hekimi, Carsten Culmsee, Gunter P. Eckert, Amalia M. Dolga. SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans. Cell Death Dis 2020;11
    https://doi.org/10.1038/s41419-020-2458-4
  21. Gee-Yoon Lee, Seung-Jae V. Lee. Eyeless Worms Can Run Away from Dangerous Blues. Mol.Cells 2021;44:623
    https://doi.org/10.14348/molcells.2021.0201
  22. Alexandre Benedetto, Timothée Bambade, Catherine Au, Jennifer M.A. Tullet, Jennifer Monkhouse, Hairuo Dang, Kalina Cetnar, Brian Chan, Filipe Cabreiro, David Gems. New label‐free automated survival assays reveal unexpected stress resistance patterns duringC. elegansaging. Aging Cell 2019;18
    https://doi.org/10.1111/acel.12998
  23. Heather C Hrach, Shannon O’Brien, Hannah S Steber, Jason Newbern, Alan Rawls, Marco Mangone. Transcriptome changes during the initiation and progression of Duchenne muscular dystrophy in Caenorhabditis elegans. 2020;29:1607
    https://doi.org/10.1093/hmg/ddaa055
  24. Richard S. Gunasekera, Thushara Galbadage, Ciceron Ayala-Orozco, Dongdong Liu, Victor García-López, Brian E. Troutman, Josiah J. Tour, Robert Pal, Sunil Krishnan, Jeffrey D. Cirillo, James M. Tour. Molecular Nanomachines Can Destroy Tissue or Kill Multicellular Eukaryotes. ACS Appl. Mater. Interfaces 2020;12:13657
    https://doi.org/10.1021/acsami.9b22595
  25. Benjamin Rémy, Sonia Mion, Laure Plener, Mikael Elias, Eric Chabrière, David Daudé. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Front. Pharmacol. 2018;9
    https://doi.org/10.3389/fphar.2018.00203
  26. Qiang Huang, Ruohan Li, Tao Yi, Fengsong Cong, Dayong Wang, Zixin Deng, Yi-Lei Zhao. Phosphorothioate-DNA bacterial diet reduces the ROS levels in C. elegans while improving locomotion and longevity. Commun Biol 2021;4
    https://doi.org/10.1038/s42003-021-02863-y
  27. Sven Bulterijs, Bart P. Braeckman. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals 2020;13:164
    https://doi.org/10.3390/ph13080164
  28. Masahiro Kuramochi, Chiaki Takanashi, Akari Yamauchi, Motomichi Doi, Kazuhiro Mio, Sakae Tsuda, Yuji C. Sasaki. Expression of Ice-Binding Proteins in Caenorhabditis elegans Improves the Survival Rate upon Cold Shock and during Freezing. Sci Rep 2019;9
    https://doi.org/10.1038/s41598-019-42650-8
  29. Tiantian Guo, Lu Cheng, Huimin Zhao, Yingying Liu, Yunhan Yang, Jie Liu, Qiuli Wu. The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone receptor DAF-12 in the intestine. Sci Rep 2020;10
    https://doi.org/10.1038/s41598-020-73712-x
  30. Sandeep Kumar, Kitlangki Suchiang. Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. 2020.
    https://doi.org/10.1007/978-981-15-1702-0_17
  31. Kitlangki Suchiang, Ramatchandirane Mahesh. Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery. 2020.
    https://doi.org/10.1007/978-981-15-1695-5_29
  32. Debanjan Goswamy, Javier E Irazoqui. A unifying hypothesis on the central role of reactive oxygen species in bacterial pathogenesis and host defense in C. elegans. Current Opinion in Immunology 2021;68:9
    https://doi.org/10.1016/j.coi.2020.08.002
  33. Lijun Zhou, Siyuan Luo, Xiaoju Wang, Yiling Zhou, Yuan Zhang, Shuai Zhu, Tao Chen, Shiling Feng, Ming Yuan, Chunbang Ding. Blumea laciniata protected Hep G2 cells and Caenorhabditis elegans against acrylamide-induced toxicity via insulin/IGF-1 signaling pathway. Food and Chemical Toxicology 2021;158:112667
    https://doi.org/10.1016/j.fct.2021.112667
  34. Heehwa G. Son, Keunhee Seo, Mihwa Seo, Sangsoon Park, Seokjin Ham, Seon Woo A. An, Eun-Seok Choi, Yujin Lee, Haeshim Baek, Eunju Kim, Youngjae Ryu, Chang Man Ha, Ao-Lin Hsu, Tae-Young Roh, Sung Key Jang, Seung-Jae V. Lee. Prefoldin 6 mediates longevity response from heat shock factor 1 to FOXO in C. elegans. Genes Dev. 2018;32:1562
    https://doi.org/10.1101/gad.317362.118
  35. N.B.S. Silva, L.A. Marques, D.D.B. Röder. Diagnosis of biofilm infections: current methods used, challenges and perspectives for the future. J Appl Microbiol 2021;131:2148
    https://doi.org/10.1111/jam.15049
  36. Fazlurrahman Khan, Saurabh Jain, Sandra Folarin Oloketuyi. Bacteria and bacterial products: Foe and friends to Caenorhabditis elegans. Microbiological Research 2018;215:102
    https://doi.org/10.1016/j.micres.2018.06.012
  37. Sandeep Hans, Dyuti Purkait, Shiv Nandan, Maghav Bansal, Saif Hameed, Zeeshan Fatima. Rec A disruption unveils cross talk between DNA repair and membrane damage, efflux pump activity, biofilm formation in Mycobacterium smegmatis. Microbial Pathogenesis 2020;149:104262
    https://doi.org/10.1016/j.micpath.2020.104262
  38. Benjamin Dilberger, Stefan Baumanns, Salome T. Spieth, Uwe Wenzel, Gunter P. Eckert. Infertility induced by auxin in PX627 Caenorhabditis elegans does not affect mitochondrial functions and aging parameters. Aging 2020;12:12268
    https://doi.org/10.18632/aging.103413
  39. Tianshu Wu, Xue Liang, Keyu He, Xi Liu, Yimeng Li, Yutong Wang, Lu Kong, Meng Tang.

    The NLRP3-Mediated Neuroinflammatory Responses to CdTe Quantum Dots and the Protection of ZnS Shell

    . IJN 2020;Volume 15:3217
    https://doi.org/10.2147/IJN.S246578
  40. Rui Han, Yu Wang, Yang Deng, Yuqin Zhang, Lin Zhang, Qiuhong Niu. Stenotrophomonas strain CPCC 101271, an intestinal lifespan-prolonging bacterium for Caenorhabditis elegans that assists in host resistance to “Bacillus nematocida” colonization. Arch Microbiol 2021;203:4951
    https://doi.org/10.1007/s00203-021-02467-4
  41. Julia A. Hotinger, Aaron E. May. Animal Models of Type III Secretion System-Mediated Pathogenesis. Pathogens 2019;8:257
    https://doi.org/10.3390/pathogens8040257
  42. Eun Ji E. Kim, Seung-Jae V. Lee. Recent progresses on anti-aging compounds and their targets in Caenorhabditis elegans. Translational Medicine of Aging 2019;3:121
    https://doi.org/10.1016/j.tma.2019.11.003
  43. Benjamin Dilberger, Maike Passon, Heike Asseburg, Carmina V. Silaidos, Fabian Schmitt, Tommy Schmiedl, Andreas Schieber, Gunter P. Eckert. Polyphenols and Metabolites Enhance Survival in Rodents and Nematodes—Impact of Mitochondria. Nutrients 2019;11:1886
    https://doi.org/10.3390/nu11081886
  44. Hoi-Khoanh Giong, Manivannan Subramanian, Kweon Yu, Jeong-Soo Lee. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila, Zebrafish, and C. elegans Models. IJMS 2021;22:8465
    https://doi.org/10.3390/ijms22168465
  45. Julia Zwirchmayr, Benjamin Kirchweger, Theresa Lehner, Ammar Tahir, Dagmar Pretsch, Judith M. Rollinger. A robust and miniaturized screening platform to study natural products affecting metabolism and survival in Caenorhabditis elegans. Sci Rep 2020;10
    https://doi.org/10.1038/s41598-020-69186-6
  46. Cyril Poupet, Christophe Chassard, Adrien Nivoliez, Stéphanie Bornes. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front. Nutr. 2020;7
    https://doi.org/10.3389/fnut.2020.00135
  47. Rabin Dhakal, Mohammad Yosofvand, Mahsa Yavari, Ramzi Abdulrahman, Ryan Schurr, Naima Moustaid-Moussa, Hanna Moussa. Review of Biological Effects of Acute and Chronic Radiation Exposure on Caenorhabditis elegans. Cells 2021;10:1966
    https://doi.org/10.3390/cells10081966