Molecules and Cells

Cited by CrossRef (40)

  1. Jingjing Du, Pengzhou Hang, Yang Pan, Burong Feng, Yuyang Zheng, Tingting Chen, Lihui Zhao, Zhimin Du. Inhibition of miR-23a attenuates doxorubicin-induced mitochondria-dependent cardiomyocyte apoptosis by targeting the PGC-1α/Drp1 pathway. Toxicology and Applied Pharmacology 2019;369:73
    https://doi.org/10.1016/j.taap.2019.02.016
  2. Ying Song, Fei Song, Chan Wu, Yi-Xiang Hong, Gang Li. The roles of epicardial adipose tissue in heart failure. Heart Fail Rev 2022;27:369
    https://doi.org/10.1007/s10741-020-09997-x
  3. Gabriel Palermo Ruiz, Henrique Camara, Narayana P.B. Fazolini, Marcelo A. Mori. Extracellular miRNAs in redox signaling: Health, disease and potential therapies. Free Radical Biology and Medicine 2021;173:170
    https://doi.org/10.1016/j.freeradbiomed.2021.05.004
  4. Magali Noval Rivas, Moshe Arditi. Kawasaki disease: pathophysiology and insights from mouse models. Nat Rev Rheumatol 2020;16:391
    https://doi.org/10.1038/s41584-020-0426-0
  5. Michel Desjarlais, Sylvie Dussault, José Carlos Rivera, Sylvain Chemtob, Alain Rivard. MicroRNA Expression Profiling of Bone Marrow–Derived Proangiogenic Cells (PACs) in a Mouse Model of Hindlimb Ischemia: Modulation by Classical Cardiovascular Risk Factors. Front. Genet. 2020;11
    https://doi.org/10.3389/fgene.2020.00947
  6. Alireza Farokhian, Ali Rajabi, Amirhossein Sheida, Amirhossein Abdoli, Moein Rafiei, Zahra Hadian Jazi, Sahar Ahmadi Asouri, Mohammad Amin Morshedi, Michael R Hamblin, Parisa Adib-Hajbagheri, Hamed Mirzaei. Apoptosis and myocardial infarction: role of ncRNAs and exosomal ncRNAs. Epigenomics 2023;15:307
    https://doi.org/10.2217/epi-2022-0451
  7. Tao Zhou, Guowei Qin, Liehong Yang, Daokang Xiang, Suining Li. LncRNA XIST regulates myocardial infarction by targeting miR‐130a‐3p. Journal Cellular Physiology 2019;234:8659
    https://doi.org/10.1002/jcp.26327
  8. Smitha Bhaskar, Preethi Sheshadri, Joel P. Joseph, Chandrakanta Potdar, Jyothi Prasanna, Anujith Kumar. Mitochondrial Superoxide Dismutase Specifies Early Neural Commitment by Modulating Mitochondrial Dynamics. iScience 2020;23:101564
    https://doi.org/10.1016/j.isci.2020.101564
  9. Sisi Lei, Yuchao Feng, Peiying Huang, BoJun Chen, Kun Bao, Qihua Wu, Haobo Zhang, Xiaoyan Huang. Ophiopogonin D′-induced mitophagy and mitochondrial damage are associated with dysregulation of the PINK1/Parkin signaling pathway in AC16 cells. Toxicology 2022;477:153275
    https://doi.org/10.1016/j.tox.2022.153275
  10. Isabel Witvrouwen, Andreas B. Gevaert, Emeline M. Van Craenenbroeck, Amaryllis H. Van Craenenbroeck. MicroRNA Isolation from Plasma for Real‐Time qPCR Array. CP Human Genetics 2018;99
    https://doi.org/10.1002/cphg.69
  11. Giulio Ferrero, Sara Carpi, Beatrice Polini, Barbara Pardini, Paola Nieri, Alessia Impeduglia, Sara Grioni, Sonia Tarallo, Alessio Naccarati. Intake of Natural Compounds and Circulating microRNA Expression Levels: Their Relationship Investigated in Healthy Subjects With Different Dietary Habits. Front. Pharmacol. 2021;11
    https://doi.org/10.3389/fphar.2020.619200
  12. Matthew Reily-Bell, Andrew Bahn, Rajesh Katare. Reactive Oxygen Species-Mediated Diabetic Heart Disease: Mechanisms and Therapies. Antioxidants & Redox Signaling 2022;36:608
    https://doi.org/10.1089/ars.2021.0098
  13. Ilona Hromadnikova, Katerina Kotlabova, Lenka Dvorakova, Ladislav Krofta. Evaluation of Vascular Endothelial Function in Young and Middle-Aged Women with Respect to a History of Pregnancy, Pregnancy-Related Complications, Classical Cardiovascular Risk Factors, and Epigenetics. IJMS 2020;21:430
    https://doi.org/10.3390/ijms21020430
  14. Magdalena Stoeva. RETRACTED ARTICLE: Apoptotic suppression of inflammatory macrophages and foam cells in vascular tissue by miR-23a. Health Technol. 2019;9:657
    https://doi.org/10.1007/s12553-019-00301-y
  15. Pei-Chun Fan, Chia-Chun Chen, Chen-Ching Peng, Chih-Hsiang Chang, Chia-Hung Yang, Chi Yang, Lichieh Julie Chu, Yung-Chang Chen, Chih-Wei Yang, Yu-Sun Chang, Pao-Hsien Chu. A circulating miRNA signature for early diagnosis of acute kidney injury following acute myocardial infarction. J Transl Med 2019;17
    https://doi.org/10.1186/s12967-019-1890-7
  16. Juha M. T. Hyttinen, Janusz Blasiak, Kai Kaarniranta. Non-Coding RNAs Regulating Mitochondrial Functions and the Oxidative Stress Response as Putative Targets against Age-Related Macular Degeneration (AMD). IJMS 2023;24:2636
    https://doi.org/10.3390/ijms24032636
  17. Mohd Murshad Ahmed, Romana Ishrat, Safia Tazyeen, Aftab Alam, Anam Farooqui, Rafat Ali, Nikhat Imam, Naaila Tamkeen, Shahnawaz Ali, Md Zubbair Malik, Armiya Sultan. In Silico Integrative Approach Revealed Key MicroRNAs and Associated Target Genes in Cardiorenal Syndrome. Bioinform Biol Insights 2021;15:117793222110273
    https://doi.org/10.1177/11779322211027396
  18. Miłosz Majka, Marcin Kleibert, Małgorzata Wojciechowska. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart’s Vulnerability to Ischemia-Reperfusion Injury. Cells 2021;10:3331
    https://doi.org/10.3390/cells10123331
  19. Liping Liu, Cheng Wang, Xuemei Luo, Yuwen Wang, Fang Li. Leonurine Alleviates Hypoxia-Induced Myocardial Damage by Regulating miRNAs. Natural Product Communications 2021;16:1934578X2110072
    https://doi.org/10.1177/1934578X211007274
  20. Jing Huang, Wei Zhang, Cai-lian Zhang, Lei Wang. Interleukin-17 aggravates right ventricular remodeling via activating STAT3 under both normoxia and hypoxia. BMC Cardiovasc Disord 2021;21
    https://doi.org/10.1186/s12872-021-02069-4
  21. Branislav Kura, Barbara Szeiffova Bacova, Barbora Kalocayova, Matus Sykora, Jan Slezak. Oxidative Stress-Responsive MicroRNAs in Heart Injury. IJMS 2020;21:358
    https://doi.org/10.3390/ijms21010358
  22. Ilona Hromadnikova, Katerina Kotlabova, Lenka Dvorakova, Ladislav Krofta, Jan Sirc. Substantially Altered Expression Profile of Diabetes/Cardiovascular/Cerebrovascular Disease Associated microRNAs in Children Descending from Pregnancy Complicated by Gestational Diabetes Mellitus—One of Several Possible Reasons for an Increased Cardiovascular Risk. Cells 2020;9:1557
    https://doi.org/10.3390/cells9061557
  23. Shan Wang, Ying Sun, Lan Yao, Yunli Xing, Huayu Yang, Qing Ma. The Role of microRNA-23a-3p in the Progression of Human Aging Process by Targeting FOXO3a. Mol Biotechnol 2023
    https://doi.org/10.1007/s12033-023-00746-7
  24. Clara Ortega-Camarillo, Guadalupe Díaz-Rosas, Alejandro Ávalos-Rodríguez, María Guadalupe Martínez-Hernández, Norma Balderrabano-Saucedo, Alejandra Contreras-Ramos. Changes in miR 21 and 23b expression in postnatal hypertrophic heart derived from gestational diabetes precede dilated cardiomyopathy. J Biosci 2021;46
    https://doi.org/10.1007/s12038-021-00201-2
  25. Shaimaa A. Gouhar, Mahmoud T. Abo‐elfadl, Amira M. Gamal‐Eldeen, Sherien M. El‐Daly. Involvement of miRNAs in response to oxidative stress induced by the steroidal glycoalkaloid α‐solanine in hepatocellular carcinoma cells. Environmental Toxicology 2022;37:212
    https://doi.org/10.1002/tox.23390
  26. Montserrat Climent, Giacomo Viggiani, Ya-Wen Chen, Gerald Coulis, Alessandra Castaldi. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. IJMS 2020;21:4370
    https://doi.org/10.3390/ijms21124370
  27. Ilona Hromadnikova, Katerina Kotlabova, Lenka Dvorakova, Ladislav Krofta. Diabetes Mellitus and Cardiovascular Risk Assessment in Mothers with a History of Gestational Diabetes Mellitus Based on Postpartal Expression Profile of MicroRNAs Associated with Diabetes Mellitus and Cardiovascular and Cerebrovascular Diseases. IJMS 2020;21:2437
    https://doi.org/10.3390/ijms21072437
  28. Ilona Hromadnikova, Katerina Kotlabova, Lenka Dvorakova, Ladislav Krofta, Jan Sirc. Postnatal Expression Profile of microRNAs Associated with Cardiovascular and Cerebrovascular Diseases in Children at the Age of 3 to 11 Years in Relation to Previous Occurrence of Pregnancy-Related Complications. IJMS 2019;20:654
    https://doi.org/10.3390/ijms20030654
  29. Yu Qiao, Chuxuan Wang, Jiayuan Kou, lujing Wang, Dong Han, Da Huo, Fuyan Li, Xiaoxi Zhou, Dehao Meng, Jiaran Xu, Ghulam Murtaza, Bobkov Artyom, Ning Ma, Shanshun Luo. MicroRNA-23a suppresses the apoptosis of inflammatory macrophages and foam cells in atherogenesis by targeting HSP90. Gene 2020;729:144319
    https://doi.org/10.1016/j.gene.2019.144319
  30. Hong Zhang, Renfeng Xu, Zhengchao Wang, Xu Ke. Contribution of Oxidative Stress to HIF-1-Mediated Profibrotic Changes during the Kidney Damage. Oxidative Medicine and Cellular Longevity 2021;2021:1
    https://doi.org/10.1155/2021/6114132
  31. Chisato Kinoshita, Koji Aoyama, Toshio Nakaki. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radical Biology and Medicine 2018;119:17
    https://doi.org/10.1016/j.freeradbiomed.2017.11.023
  32. Houlong Lv, Lina Cong, Ming Chang, Shumin Ma, Guiqing Liu. Mesoporous Silica Nanoparticles Mediate miR-181 to Promote Mitochondrial Apoptosis and Oxidative Stress in Chemotherapy-Induced Myocardial Injury. sci adv mater 2021;13:1907
    https://doi.org/10.1166/sam.2021.4094
  33. Iselin Rynning, Volker M Arlt, Kristyna Vrbova, Jiří Neča, Pavel Rossner Jr, Jiri Klema, Bente Ulvestad, Elisabeth Petersen, Øivind Skare, Aage Haugen, David H Phillips, Miroslav Machala, Jan Topinka, Steen Mollerup. Bulky DNA adducts, microRNA profiles, and lipid biomarkers in Norwegian tunnel finishing workers occupationally exposed to diesel exhaust. Occup Environ Med 2019;76:10
    https://doi.org/10.1136/oemed-2018-105445
  34. Henri Charrier, Marie Cuvelliez, Emilie Dubois-Deruy, Paul Mulder, Vincent Richard, Christophe Bauters, Florence Pinet. Integrative System Biology Analyses Identify Seven MicroRNAs to Predict Heart Failure. ncRNA 2019;5:22
    https://doi.org/10.3390/ncrna5010022
  35. Sylwia Ciesielska, Izabella Slezak-Prochazka, Patryk Bil, Joanna Rzeszowska-Wolny. Micro RNAs in Regulation of Cellular Redox Homeostasis. IJMS 2021;22:6022
    https://doi.org/10.3390/ijms22116022
  36. Yin‐Wen Xia, Shao‐Bo Wang. Long noncoding RNA PVT1 facilitates high glucose‐induced cardiomyocyte death through the miR‐23a‐3p/CASP10 axis. Cell Biol Int 2021;45:154
    https://doi.org/10.1002/cbin.11479
  37. Daniela Maria Tanase, Evelina Maria Gosav, Anca Ouatu, Minerva Codruta Badescu, Nicoleta Dima, Ana Roxana Ganceanu-Rusu, Diana Popescu, Mariana Floria, Elena Rezus, Ciprian Rezus. Current Knowledge of MicroRNAs (miRNAs) in Acute Coronary Syndrome (ACS): ST-Elevation Myocardial Infarction (STEMI). Life 2021;11:1057
    https://doi.org/10.3390/life11101057
  38. Ghaidafeh Akbari. Emerging roles of microRNAs in intestinal ischemia/reperfusion–induced injury: a review. J Physiol Biochem 2020;76:525
    https://doi.org/10.1007/s13105-020-00772-y
  39. Radka Sigutova, Lukas Evin, David Stejskal, Vera Ploticova, Zdenek Svagera. Specific microRNAs and heart failure: time for the next step toward application?. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2022;166:359
    https://doi.org/10.5507/bp.2022.028
  40. Ilona Hromadnikova, Katerina Kotlabova, Ladislav Krofta. Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. IJMS 2022;23:10635
    https://doi.org/10.3390/ijms231810635