Molecules and Cells

Cited by CrossRef (34)

  1. Chang-Cheng Li, Mei-jia Yang, Jing Yang, Mei Kang, Tao Li, Li-Hui He, Ying-Jie Song, Yi-Bo Zhu, Ning-Lin Zhao, Chang Zhao, Qin Huang, Xing-Yu Mou, Hong Li, Ai-Ping Tong, Hong Tang, Rui Bao. Structural and biochemical analysis of 1-Cys peroxiredoxin ScPrx1 from Saccharomyces cerevisiae mitochondria. Biochimica et Biophysica Acta (BBA) - General Subjects 2020;1864:129706
    https://doi.org/10.1016/j.bbagen.2020.129706
  2. . Overview on Peroxiredoxin. 2016;39:1
    https://doi.org/10.14348/molcells.2016.2368
  3. Guozhi Bi, Man Hu, Ling Fu, Xiaojuan Zhang, Jianru Zuo, Jiayang Li, Jing Yang, Jian-Min Zhou. The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay. Nat. Plants 2022;8:1160
    https://doi.org/10.1038/s41477-022-01252-5
  4. Raphael F. Queiroz, Christopher P. Stanley, Kathryn Wolhuter, Stephanie M. Y. Kong, Ragul Rajivan, Naomi McKinnon, Giang T. H. Nguyen, Antonella Roveri, Sebastian Guttzeit, Philip Eaton, William A. Donald, Fulvio Ursini, Christine C. Winterbourn, Anita Ayer, Roland Stocker. Hydrogen peroxide signaling via its transformation to a stereospecific alkyl hydroperoxide that escapes reductive inactivation. Nat Commun 2021;12
    https://doi.org/10.1038/s41467-021-26991-5
  5. Inseong Jo, Dukyun Kim, Ye-Ji Bang, Jinsook Ahn, Sang Ho Choi, Nam-Chul Ha. The hydrogen peroxide hypersensitivity of OxyR2 in Vibrio vulnificus depends on conformational constraints. Journal of Biological Chemistry 2017;292:7223
    https://doi.org/10.1074/jbc.M116.743765
  6. Luke Carroll, Kelly Gardiner, Marta Ignasiak, Jeppe Holmehave, Shingo Shimodaira, Thomas Breitenbach, Michio Iwaoka, Peter R. Ogilby, David I. Pattison, Michael J. Davies. Interaction kinetics of selenium-containing compounds with oxidants. Free Radical Biology and Medicine 2020;155:58
    https://doi.org/10.1016/j.freeradbiomed.2020.05.007
  7. Aristidis S. Veskoukis, Vassilis Paschalis, Antonios Kyparos, Michalis G. Nikolaidis. Administration of exercise-conditioned plasma alters muscle catalase kinetics in rat: An argument for in vivo-like Km instead of in vitro-like Vmax. Redox Biology 2018;15:375
    https://doi.org/10.1016/j.redox.2018.01.001
  8. María Inés De Armas, Romina Esteves, Nicolás Viera, Aníbal M. Reyes, Mauricio Mastrogiovanni, Thiago G.P. Alegria, Luis E.S. Netto, Verónica Tórtora, Rafael Radi, Madia Trujillo. Rapid peroxynitrite reduction by human peroxiredoxin 3: Implications for the fate of oxidants in mitochondria. Free Radical Biology and Medicine 2019;130:369
    https://doi.org/10.1016/j.freeradbiomed.2018.10.451
  9. Austin McGinnis, Vladimir I. Klichko, William C. Orr, Svetlana N. Radyuk. Hyperoxidation of Peroxiredoxins and Effects on Physiology of Drosophila. Antioxidants 2021;10:606
    https://doi.org/10.3390/antiox10040606
  10. N. T. Moldogazieva, I. M. Mokhosoev, N. B. Feldman, S. V. Lutsenko. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radical Research 2018;52:507
    https://doi.org/10.1080/10715762.2018.1457217
  11. Kathrin Ulrich, Ursula Jakob. The role of thiols in antioxidant systems. Free Radical Biology and Medicine 2019;140:14
    https://doi.org/10.1016/j.freeradbiomed.2019.05.035
  12. James West, Trevor Roston, Joseph David, Kristin Allan, Matthew Loberg. Piecing Together How Peroxiredoxins Maintain Genomic Stability. Antioxidants 2018;7:177
    https://doi.org/10.3390/antiox7120177
  13. Petr Ježek, Blanka Holendová, Lydie Plecitá-Hlavatá. Redox Signaling from Mitochondria: Signal Propagation and Its Targets. Biomolecules 2020;10:93
    https://doi.org/10.3390/biom10010093
  14. Mars G. Sharapov, Sergey V. Gudkov, Vadim Z. Lankin. Hydroperoxide-Reducing Enzymes in the Regulation of Free-Radical Processes. Biochemistry Moscow 2021;86:1256
    https://doi.org/10.1134/S0006297921100084
  15. Alexander V. Peskin, Flávia C. Meotti, Luiz F. de Souza, Robert F. Anderson, Christine C. Winterbourn, Armindo Salvador. Intra-dimer cooperativity between the active site cysteines during the oxidation of peroxiredoxin 2. Free Radical Biology and Medicine 2020;158:115
    https://doi.org/10.1016/j.freeradbiomed.2020.07.007
  16. Sarah Stöcker, Koen Van Laer, Ana Mijuskovic, Tobias P. Dick. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs. Antioxidants & Redox Signaling 2018;28:558
    https://doi.org/10.1089/ars.2017.7162
  17. Valesca Anschau, Gerardo Ferrer-Sueta, Rogerio Luis Aleixo-Silva, Renata Bannitz Fernandes, Carlos A. Tairum, Celisa Caldana Costa Tonoli, Mario Tyago Murakami, Marcos Antonio de Oliveira, Luis Eduardo Soares Netto. Reduction of sulfenic acids by ascorbate in proteins, connecting thiol-dependent to alternative redox pathways. Free Radical Biology and Medicine 2020;156:207
    https://doi.org/10.1016/j.freeradbiomed.2020.06.015
  18. Evan A. Elko, Brian Cunniff, David J. Seward, Shi Biao Chia, Reem Aboushousha, Cheryl van de Wetering, Jos van der Velden, Allison Manuel, Arti Shukla, Nicholas H. Heintz, Vikas Anathy, Albert van der Vliet, Yvonne M.W. Janssen-Heininger. Peroxiredoxins and Beyond; Redox Systems Regulating Lung Physiology and Disease. Antioxidants & Redox Signaling 2019;31:1070
    https://doi.org/10.1089/ars.2019.7752
  19. José Rafael Pedrajas, José Antonio Bárcena. Antioxidants and Antioxidant Enzymes in Higher Plants. 2019.
    https://doi.org/10.1007/978-3-319-75088-0_6
  20. Larissa A.C. Carvalho, Daniela R. Truzzi, Thamiris S. Fallani, Simone V. Alves, José Carlos Toledo, Ohara Augusto, Luís E.S. Netto, Flavia C. Meotti. Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2. Journal of Biological Chemistry 2017;292:8705
    https://doi.org/10.1074/jbc.M116.767657
  21. Tom E. Forshaw, Julie A. Reisz, Kimberly J. Nelson, Rajesh Gumpena, J. Reed Lawson, Thomas J. Jönsson, Hanzhi Wu, Jill E. Clodfelter, Lynnette C. Johnson, Cristina M. Furdui, W. Todd Lowther. Specificity of Human Sulfiredoxin for Reductant and Peroxiredoxin Oligomeric State. Antioxidants 2021;10:946
    https://doi.org/10.3390/antiox10060946
  22. М.Г. Шарапов, С.В. Гудков, В.З. Ланкин. Гидропероксид-восстанавливающие ферментные системы в регуляции свободнорадикальных процессов. БМ 2021;86:1479
    https://doi.org/10.31857/S0320972521100067
  23. A.В. Пескин, К.С. Уинтерборн. Загадка 2-Cys-пероксиредоксинов: какова их роль в клетке?. БМ 2021;86:100
    https://doi.org/10.31857/S0320972521010085
  24. Sheetal Panday, Raghav Talreja, Mahendra Kavdia. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvascular Research 2020;131:104010
    https://doi.org/10.1016/j.mvr.2020.104010
  25. Deepti Talwar, Tobias P. Dick. Redox Chemistry and Biology of Thiols. 2020.
    https://doi.org/10.1016/B978-0-323-90219-9.00007-8
  26. Alexander V. Peskin, Christine C. Winterbourn. The Enigma of 2-Cys Peroxiredoxins: What Are Their Roles?. Biochemistry Moscow 2021;86:84
    https://doi.org/10.1134/S0006297921010089
  27. Kathrin Ulrich, Blanche Schwappach, Ursula Jakob. Thiol-based switching mechanisms of stress-sensing chaperones. 2021;402:239
    https://doi.org/10.1515/hsz-2020-0262
  28. Rakesh Kumar, Ashu Mohammad, Reena V. Saini, Anterpreet Chahal, Chi-Ming Wong, Deepak Sharma, Sukhvir Kaur, Vikas Kumar, Christine C. Winterbourn, Adesh K. Saini. Deciphering the in vivo redox behavior of human peroxiredoxins I and II by expressing in budding yeast. Free Radical Biology and Medicine 2019;145:321
    https://doi.org/10.1016/j.freeradbiomed.2019.09.034
  29. Sophie Quintin, Théo Aspert, Tao Ye, Gilles Charvin, Elise A. Kikis. Distinct mechanisms underlie H2O2 sensing in C. elegans head and tail. PLoS ONE 2022;17:e0274226
    https://doi.org/10.1371/journal.pone.0274226
  30. Mars G. Sharapov, Sergey V. Gudkov. Peroxiredoxin 1 - Multifunctional antioxidant enzyme, protects from oxidative damages and increases the survival rate of mice exposed to total body irradiation. Archives of Biochemistry and Biophysics 2021;697:108671
    https://doi.org/10.1016/j.abb.2020.108671
  31. Svetlana N. Radyuk, William C. Orr. The Multifaceted Impact of Peroxiredoxins on Aging and Disease. Antioxidants & Redox Signaling 2018;29:1293
    https://doi.org/10.1089/ars.2017.7452
  32. Sarah Stöcker, Michael Maurer, Thomas Ruppert, Tobias P Dick. A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation. Nat Chem Biol 2018;14:148
    https://doi.org/10.1038/nchembio.2536
  33. Ulla G. Knaus. Reactive Oxygen Species. 2018.
    https://doi.org/10.1007/164_2020_380
  34. N. Amy Yewdall, Alexander V. Peskin, Mark B. Hampton, David C. Goldstone, F. Grant Pearce, Juliet A. Gerrard. Quaternary structure influences the peroxidase activity of peroxiredoxin 3. Biochemical and Biophysical Research Communications 2018;497:558
    https://doi.org/10.1016/j.bbrc.2018.02.093