Molecules and Cells

Cited by CrossRef (165)

  1. Michael J. Van Oosten, Silvia Silletti, Gianpiero Guida, Valerio Cirillo, Emilio Di Stasio, Petronia Carillo, Pasqualina Woodrow, Albino Maggio, Giampaolo Raimondi. A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato. Front. Plant Sci. 2017;8
    https://doi.org/10.3389/fpls.2017.01220
  2. Yun-Im Kang, Youn Jung Choi, Young Ran Lee, Kyung Hye Seo, Jung-Nam Suh, Hye-Rim Lee. Cut Flower Characteristics and Growth Traits under Salt Stress in Lily Cultivars. Plants 2021;10:1435
    https://doi.org/10.3390/plants10071435
  3. Kailash Chand KUMAWAT, Sharon NAGPAL, Poonam SHARMA. Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review. Pedosphere 2022;32:223
    https://doi.org/10.1016/S1002-0160(21)60070-X
  4. Dhiman Adhikary, Debesh Das, Md Yasin Ali, Hayat Ullah, Avishek Datta. Growth, grain yield, and water productivity of traditional rice landraces from coastal Bangladesh, as affected by salt stress. Journal of Crop Improvement 2022:1
    https://doi.org/10.1080/15427528.2022.2048765
  5. Zahra Shahbani, Morteza Kosh-Khui, Hassan Salehi, Mohsen Kafi, Ali Akbar Kamgar Haghighi, Saeed Eshghi, Mohammad Omidi. Hormonal and Physiological Changes in Miniature Roses (Rosa chinensis Jacq. var. minima Rehd.) Exposed to Water Deficit and Salinity Stress Conditions. Gesunde Pflanzen 2023
    https://doi.org/10.1007/s10343-022-00813-0
  6. Chendong Sun, Li Yu, Shuojun Zhang, Qijuan Gu, Mei Wang. Genome-wide characterization of the SHORT INTER-NODES/STYLISH and Shi-Related Sequence family in Gossypium hirsutum and functional identification of GhSRS21 under salt stress. Front. Plant Sci. 2023;13
    https://doi.org/10.3389/fpls.2022.1078083
  7. Sudeshna Shyam Choudhury. Transporters and Plant Osmotic Stress. 2023.
    https://doi.org/10.1016/B978-0-12-817958-1.00014-1
  8. Satpal Turan. Salinity Responses and Tolerance in Plants, Volume 1. 2023.
    https://doi.org/10.1007/978-3-319-75671-4_14
  9. Lijun Wang, Jiaojiao Gao, Zixin Zhang, Weimiao Liu, Peilei Cheng, Wenting Mu, Tong Su, Sumei Chen, Fadi Chen, Jiafu Jiang. Overexpression of CmSOS1 confers waterlogging tolerance in Chrysanthemum . J. Integr. Plant Biol 2020;62:1059
    https://doi.org/10.1111/jipb.12889
  10. Xiaojiang Li, Bingjun Yu, Yiqing Cui, Yifan Yin. Melatonin application confers enhanced salt tolerance by regulating Na+ and Cl− accumulation in rice. Plant Growth Regul 2017;83:441
    https://doi.org/10.1007/s10725-017-0310-3
  11. Arajmand Frukh, Altaf Ahmad, Tariq Omar Siddiqi. Plant Signaling Molecules. 2017.
    https://doi.org/10.1016/B978-0-12-816451-8.00030-7
  12. Gangjun Zhao, Huiyang Yu, Minmin Liu, Yongen Lu, Bo Ouyang. Identification of salt-stress responsive microRNAs from Solanum lycopersicum and Solanum pimpinellifolium. Plant Growth Regul 2017;83:129
    https://doi.org/10.1007/s10725-017-0289-9
  13. Yun-Kiam Yap, Fadia El-Sherif, Eman S. Habib, Salah Khattab. Moringa oleifera Leaf Extract Enhanced Growth, Yield, and Silybin Content While Mitigating Salt-Induced Adverse Effects on the Growth of Silybum marianum. Agronomy 2021;11:2500
    https://doi.org/10.3390/agronomy11122500
  14. Iva Pavlović, Aleš Pěnčík, Ondřej Novák, Valerija Vujčić, Sandra Radić Brkanac, Hrvoje Lepeduš, Miroslav Strnad, Branka Salopek-Sondi. Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism. Plant Physiology and Biochemistry 2018;125:74
    https://doi.org/10.1016/j.plaphy.2018.01.026
  15. Ali Anwar, Ju-Kon Kim. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. IJMS 2020;21:2695
    https://doi.org/10.3390/ijms21082695
  16. Xiao-Hua Zhang, Cheng Ma, Lu Zhang, Min Su, Juan Wang, Sheng Zheng, Teng-Guo Zhang. GR24-mediated enhancement of salt tolerance and roles of H2O2 and Ca2+ in regulating this enhancement in cucumber. Journal of Plant Physiology 2022;270:153640
    https://doi.org/10.1016/j.jplph.2022.153640
  17. Rui Bai, Chunming Bai, Xiaori Han, Yifei Liu, Jean Wan Hong Yong. The significance of calcium-sensing receptor in sustaining photosynthesis and ameliorating stress responses in plants. Front. Plant Sci. 2022;13
    https://doi.org/10.3389/fpls.2022.1019505
  18. Lin CHEN, Heng SUN, Jie KONG, Haijiang XU, Xiyan YANG. Integrated transcriptome and proteome analysis reveals complex regulatory mechanism of cotton in response to salt stress. J Cotton Res 2021;4
    https://doi.org/10.1186/s42397-021-00085-5
  19. Venja M. Roeber, Thomas Schmülling, Anne Cortleven. The Photoperiod: Handling and Causing Stress in Plants. Front. Plant Sci. 2022;12
    https://doi.org/10.3389/fpls.2021.781988
  20. Krishna Kumar Rai, Nagendra Rai, Shashi Pandey Rai. Prediction and validation of DREB transcription factors for salt tolerance in Solanum lycopersicum L.: An integrated experimental and computational approach. Environmental and Experimental Botany 2019;165:1
    https://doi.org/10.1016/j.envexpbot.2019.05.015
  21. Zhixin Liu, Chenxi Guo, Rui Wu, Yunhe Hu, Yaping Zhou, Jiajing Wang, Xiaole Yu, Yixin Zhang, George Bawa, Xuwu Sun. FLS2–RBOHD–PIF4 Module Regulates Plant Response to Drought and Salt Stress. IJMS 2022;23:1080
    https://doi.org/10.3390/ijms23031080
  22. Yibo Cao, Huifang Song, Lingyun Zhang. New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. IJMS 2022;23:16048
    https://doi.org/10.3390/ijms232416048
  23. Youyue Li, Xiangkai You, Zhe Tang, Tianqi Zhu, Bowen Liu, Mo‐Xian Chen, Yuefei Xu, Tie‐Yuan Liu. Isolation and identification of plant growth‐promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. Physiologia Plantarum 2022;174
    https://doi.org/10.1111/ppl.13817
  24. Hadi Hamidi Ravari, Hamid Reza Kavousi, Fereshteh Mohammadi, Shahram Pourseyedi. Partial cloning, characterization, and analysis of expression and activity of plasma membrane H+-ATPase in Kallar grass [Leptochloa fusca (L.) Kunth] under salt stress. BIOLOGIA FUTURA 2020;71:231
    https://doi.org/10.1007/s42977-020-00019-3
  25. Yanhong Chen, Yuanhao Dai, Yixin Li, Jie Yang, Yuna Jiang, Guoyuan Liu, Chunmei Yu, Fei Zhong, Bolin Lian, Jian Zhang. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5. BMC Plant Biol 2022;22
    https://doi.org/10.1186/s12870-022-03487-y
  26. Hongbo Shao, Liye Chu, Haiying Lu, Weicong Qi, Xin Chen, Jia Liu, Shaoping Kuang, Boping Tang, Vanessa Wong. Towards sustainable agriculture for the salt-affected soil. Land Degrad Dev 2019;30:574
    https://doi.org/10.1002/ldr.3218
  27. Wen‐si Tang, Li Zhong, Qing‐qian Ding, Yi‐ning Dou, Wei‐wei Li, Zhao‐shi Xu, Yong‐bin Zhou, Jun Chen, Ming Chen, You‐zhi Ma. Histone deacetylase AtSRT2 regulates salt tolerance during seed germination via repression of vesicle‐associated membrane protein 714 (VAMP714) in Arabidopsis . New Phytologist 2022;234:1278
    https://doi.org/10.1111/nph.18060
  28. Liuqing Huo, Zijian Guo, Xin Jia, Xun Sun, Ping Wang, Xiaoqing Gong, Fengwang Ma. Increased autophagic activity in roots caused by overexpression of the autophagy-related gene MdATG10 in apple enhances salt tolerance. Plant Science 2020;294:110444
    https://doi.org/10.1016/j.plantsci.2020.110444
  29. Venera Kamburova, Ilkhom Salakhutdinov, Ibrokhim Y. Abdurakhmonov. Cotton. 2020.
    https://doi.org/10.5772/intechopen.104761
  30. Liping Dai, Peiyuan Li, Qing Li, Yujia Leng, Dali Zeng, Qian Qian. Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice. IJMS 2022;23:5236
    https://doi.org/10.3390/ijms23095236
  31. Aiqin Zhang, Dongming Han, Yu Wang, Huifang Mu, Tong Zhang, Xiufeng Yan, Qiuying Pang. Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus L.) root based on de novo assembly sequencing analysis. Planta 2018;247:715
    https://doi.org/10.1007/s00425-017-2818-1
  32. Bikash Adhikari, Omolayo J. Olorunwa, T. Casey Barickman. Seed Priming Enhances Seed Germination and Morphological Traits of Lactuca sativa L. under Salt Stress. Seeds 2022;1:74
    https://doi.org/10.3390/seeds1020007
  33. Johannes Loubser, Paul Hills. The Application of a Commercially Available Citrus-Based Extract Mitigates Moderate NaCl-Stress in Arabidopsis thaliana Plants. Plants 2020;9:1010
    https://doi.org/10.3390/plants9081010
  34. Yu-Ri Choi, Inyoung Kim, Manu Kumar, Jaekyung Shim, Hyun-Uk Kim. Chloroplast Localized FIBRILLIN11 Is Involved in the Osmotic Stress Response during Arabidopsis Seed Germination. Biology 2021;10:368
    https://doi.org/10.3390/biology10050368
  35. Mostafa Abdelrahman, Rie Nishiyama, Cuong Duy Tran, Miyako Kusano, Ryo Nakabayashi, Yozo Okazaki, Fumio Matsuda, Ricardo A. Chávez Montes, Mohammad Golam Mostofa, Weiqiang Li, Yasuko Watanabe, Atsushi Fukushima, Maho Tanaka, Motoaki Seki, Kazuki Saito, Luis Herrera-Estrella, Lam-Son Phan Tran. Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in Arabidopsis . Proc. Natl. Acad. Sci. U.S.A. 2021;118
    https://doi.org/10.1073/pnas.2105021118
  36. Jiali Wang, Zimou Sun, Caihui Chen, Meng Xu. The MKK2a Gene Involved in the MAPK Signaling Cascades Enhances Populus Salt Tolerance. IJMS 2022;23:10185
    https://doi.org/10.3390/ijms231710185
  37. Xinying Chen, Pengkai Wang, Fangfang Zhao, Lu Lu, Xiaofei Long, Zhaodong Hao, Jisen Shi, Jinhui Chen. The Liriodendron chinense MKK2 Gene Enhances Arabidopsis thaliana Salt Resistance. Forests 2020;11:1160
    https://doi.org/10.3390/f11111160
  38. Azamal Husen. Harsh Environment and Plant Resilience. 2020.
    https://doi.org/10.1007/978-3-030-65912-7_1
  39. Fei Xiao, Huapeng Zhou. Plant salt response: Perception, signaling, and tolerance. Front. Plant Sci. 2023;13
    https://doi.org/10.3389/fpls.2022.1053699
  40. Moustafa A.A. Muhammed, Abdel Kareem S.H. Mohamed, Muhammad Farooq Qayyum, Ghulam Haider, Hassan A.M. Ali. Physiological response of mango transplants to phytohormones under salinity stress. Scientia Horticulturae 2022;296:110918
    https://doi.org/10.1016/j.scienta.2022.110918
  41. Zarmina Gul, Zhong-Hua Tang, Muhammad Arif, Zhang Ye. An Insight into Abiotic Stress and Influx Tolerance Mechanisms in Plants to Cope in Saline Environments. Biology 2022;11:597
    https://doi.org/10.3390/biology11040597
  42. Claudia Cocozza, Federico Brilli, Laura Miozzi, Sara Pignattelli, Silvia Rotunno, Cecilia Brunetti, Cristiana Giordano, Susanna Pollastri, Mauro Centritto, Gian Paolo Accotto, Roberto Tognetti, Francesco Loreto. Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plants. Plant Science 2019;289:110260
    https://doi.org/10.1016/j.plantsci.2019.110260
  43. Changjiang Li, Lei Shi, Xing Li, Yanan Wang, Yujing Bi, Wei Li, Huifang Ma, Binqing Chen, Lei Zhu, Ying Fu. ECAP is a key negative regulator mediating different pathways to modulate salt stress‐induced anthocyanin biosynthesis in Arabidopsis . New Phytologist 2022;233:2216
    https://doi.org/10.1111/nph.17937
  44. Shugao Fan, Jianmin Chen, Rongzhen Yang. Candidate Genes for Salt Tolerance in Forage Sorghum under Saline Conditions from Germination to Harvest Maturity. Genes 2023;14:293
    https://doi.org/10.3390/genes14020293
  45. Sahana Basu, Alok Kumar, Ibtesham Benazir, Gautam Kumar. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. Physiologia Plantarum 2021;171:502
    https://doi.org/10.1111/ppl.13112
  46. Yuxiang Qin, Xiuzhi Liu, Xiaoyan Quan, Jianfeng Chen, Zuxuan Wang. Heterologously Expressing a Wheat CI Small Heat Shock Protein Gene Enhances the Salinity Tolerance of Arabidopsis thaliana. J Plant Growth Regul 2022;41:236
    https://doi.org/10.1007/s00344-021-10296-4
  47. Xiang Li, Lanlan Liu, Shixian Sun, Yanmei Li, Lu Jia, Shili Ye, Yanxuan Yu, Komivi Dossa, Yunpeng Luan. Transcriptome analysis reveals the key pathways and candidate genes involved in salt stress responses in Cymbidium ensifolium leaves. BMC Plant Biol 2023;23
    https://doi.org/10.1186/s12870-023-04050-z
  48. Kavya Bakka, Dinakar Challabathula. Plant Microbe Symbiosis. 2023.
    https://doi.org/10.1007/978-3-030-36248-5_16
  49. Md. Tahjib-Ul-Arif, Sonya Afrin, Mohammed Arif Sadik Polash, Tahmina Akter, Shuma Rani Ray, Md. Tofazzal Hossain, M. Afzal Hossain. Role of exogenous signaling molecules in alleviating salt-induced oxidative stress in rice (Oryza sativa L.): a comparative study. Acta Physiol Plant 2019;41
    https://doi.org/10.1007/s11738-019-2861-6
  50. Sajid Mehmood, Waqas Ahmed, Muhammad Ikram, Muhammad Imtiaz, Sammina Mahmood, Shuxin Tu, Diyun Chen. Chitosan Modified Biochar Increases Soybean (Glycine max L.) Resistance to Salt-Stress by Augmenting Root Morphology, Antioxidant Defense Mechanisms and the Expression of Stress-Responsive Genes. Plants 2020;9:1173
    https://doi.org/10.3390/plants9091173
  51. Feng Ding, Bing-Lei Zhang, Fan Li, Ying-Rui Li, Jian-Hui Li, Ying-Tang Lu. General control non-repressible 20 functions in the salt stress response of Arabidopsis seedling by modulating ABA accumulation. Environmental and Experimental Botany 2022;198:104856
    https://doi.org/10.1016/j.envexpbot.2022.104856
  52. Daniele Massa, Sara Melito. Plant Signaling Molecules. 2022.
    https://doi.org/10.1016/B978-0-12-816451-8.00001-0
  53. Harmanjit Kaur, Sofi J. Hussain, Gursharan Kaur, Peter Poor, Saud Alamri, Manzer H. Siddiqui, M. Iqbal R. Khan. Salicylic Acid Improves Nitrogen Fixation, Growth, Yield and Antioxidant Defence Mechanisms in Chickpea Genotypes Under Salt Stress. J Plant Growth Regul 2022;41:2034
    https://doi.org/10.1007/s00344-022-10592-7
  54. Lihua Ning, Guizhen Kan, Hongbo Shao, Deyue Yu. Physiological and transcriptional responses to salt stress in salt-tolerant and salt-sensitive soybean (Glycine max [L.] Merr.) seedlings. Land Degrad Dev 2018;29:2707
    https://doi.org/10.1002/ldr.3005
  55. Asma Sultana, Sharmila Chattopadhyay. Deciphering the involvement of glutathione in phytohormone signaling pathways to mitigate stress in planta. Nucleus 2020;63:25
    https://doi.org/10.1007/s13237-019-00288-x
  56. Eloy Navarro-León, Francisco Javier López-Moreno, Alejandro de la Torre-González, Juan Manuel Ruiz, Sergio Esposito, Begoña Blasco. Study of salt-stress tolerance and defensive mechanisms in Brassica rapa CAX1a TILLING mutants. Environmental and Experimental Botany 2020;175:104061
    https://doi.org/10.1016/j.envexpbot.2020.104061
  57. Mughair Abdul Aziz, Miloofer Sabeem, Sangeeta Kutty Mullath, Faical Brini, Khaled Masmoudi. Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses. Biomolecules 2021;11:1662
    https://doi.org/10.3390/biom11111662
  58. Javin Bachani, Ankush Mahanty, Tariq Aftab, Kundan Kumar. Insight into calcium signalling in salt stress response. South African Journal of Botany 2022;151:1
    https://doi.org/10.1016/j.sajb.2022.09.033
  59. Huayang Wang, Chen Liu, Yincai Ren, Minghua Wu, Zewan Wu, Ying Chen, Lilan He, Bing Tang, Xin Huang, Sergey Shabala, Min Yu, Liping Huang. An RNA-binding protein MUG13.4 interacts with AtAGO2 to modulate salinity tolerance in Arabidopsis. Plant Science 2019;288:110218
    https://doi.org/10.1016/j.plantsci.2019.110218
  60. Dilfuza Egamberdieva, Stephan Wirth, Sonoko Dorothea Bellingrath-Kimura, Jitendra Mishra, Naveen K. Arora. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front. Microbiol. 2019;10
    https://doi.org/10.3389/fmicb.2019.02791
  61. Jianhong Zhang, Yun Jiao, Anket Sharma, Dengfeng Shen, Bin Wei, Chuntao Hong, Bingsong Zheng, Cunde Pan. Transcriptomic analysis reveals potential pathways associated with salt resistance in pecan (Carya illinoensis K. Koch). Journal of Biotechnology 2021;330:17
    https://doi.org/10.1016/j.jbiotec.2021.02.001
  62. Xueyan Zhou, Jianfang Li, Yiqiao Wang, Xiaoyan Liang, Ming Zhang, Minhui Lu, Yan Guo, Feng Qin, Caifu Jiang. The classical SOS pathway confers natural variation of salt tolerance in maize . New Phytologist 2022;236:479
    https://doi.org/10.1111/nph.18278
  63. Paul E Verslues, Julia Bailey-Serres, Craig Brodersen, Thomas N Buckley, Lucio Conti, Alexander Christmann, José R Dinneny, Erwin Grill, Scott Hayes, Robert W Heckman, Po-Kai Hsu, Thomas E Juenger, Paloma Mas, Teun Munnik, Hilde Nelissen, Lawren Sack, Julian I Schroeder, Christa Testerink, Stephen D Tyerman, Taishi Umezawa, Philip A Wigge. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. 2023;35:67
    https://doi.org/10.1093/plcell/koac263
  64. Mei Wang, Wenping Guo, Jun Li, Xiangjian Pan, Lihao Pan, Juan Zhao, Yiwei Zhang, Shitian Cai, Xia Huang, An Wang, Qingpo Liu. The miR528-AO Module Confers Enhanced Salt Tolerance in Rice by Modulating the Ascorbic Acid and Abscisic Acid Metabolism and ROS Scavenging. J. Agric. Food Chem. 2021;69:8634
    https://doi.org/10.1021/acs.jafc.1c01096
  65. Muhammad Adnan Shahid, Ali Sarkhosh, Naeem Khan, Rashad Mukhtar Balal, Shahid Ali, Lorenzo Rossi, Celina Gómez, Neil Mattson, Wajid Nasim, Francisco Garcia-Sanchez. Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy 2020;10:938
    https://doi.org/10.3390/agronomy10070938
  66. Muhammad Zia, Joham Sarfraz Ali, Saad Hanif, Anila Sajjad, Bilal Haider Abbasi. Lupeol, a plant triterpenoid mitigates salt induced stress: growth and antioxidative response of Brassica nigra under in vitro condition. Plant Cell Tiss Organ Cult 2022
    https://doi.org/10.1007/s11240-022-02405-2
  67. Huaiyu Deng, Qi Li, Ruizhi Cao, Yafei Ren, Guanfeng Wang, Hongbo Guo, Shuhai Bu, Jingying Liu, Pengda Ma. Overexpression of SmMYC2 enhances salt resistance in Arabidopsis thaliana and Salvia miltiorrhiza hairy roots. Journal of Plant Physiology 2023;280:153862
    https://doi.org/10.1016/j.jplph.2022.153862
  68. Irene Albaladejo, Isabel Egea, Belen Morales, Francisco B. Flores, Carmen Capel, Rafael Lozano, Maria C. Bolarin. Identification of key genes involved in the phenotypic alterations of res (restored cell structure by salinity) tomato mutant and its recovery induced by salt stress through transcriptomic analysis. BMC Plant Biol 2018;18
    https://doi.org/10.1186/s12870-018-1436-9
  69. Dan Jiang, Bin Lu, Liantao Liu, Wenjing Duan, Li Chen, Jin Li, Ke Zhang, Hongchun Sun, Yongjiang Zhang, Hezhong Dong, Cundong Li, Zhiying Bai. Exogenous melatonin improves salt stress adaptation of cotton seedlings by regulating active oxygen metabolism. 2020;8:e10486
    https://doi.org/10.7717/peerj.10486
  70. Yuying Zheng, Na Wang, Zongyu Zhang, Wenhui Liu, Wengang Xie. Identification of Flowering Regulatory Networks and Hub Genes Expressed in the Leaves of Elymus sibiricus L. Using Comparative Transcriptome Analysis. Front. Plant Sci. 2022;13
    https://doi.org/10.3389/fpls.2022.877908
  71. M. B. Rubio, Rosa Hermosa, Rubén Vicente, Fabio A. Gómez-Acosta, Rosa Morcuende, Enrique Monte, Wagner Bettiol. The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress. Front. Plant Sci. 2017;8
    https://doi.org/10.3389/fpls.2017.00294
  72. Xiao Liu, Xingchen Wu, Chendong Sun, Junkang Rong. Identification and Expression Profiling of the Regulator of Chromosome Condensation 1 (RCC1) Gene Family in Gossypium Hirsutum L. under Abiotic Stress and Hormone Treatments. IJMS 2019;20:1727
    https://doi.org/10.3390/ijms20071727
  73. Letizia Zanella, Angelo Gismondi, Gabriele Di Marco, Roberto Braglia, Francesco Scuderi, Enrico L. Redi, Andrea Galgani, Antonella Canini. Induction of Antioxidant Metabolites in Moringa oleifera Callus by Abiotic Stresses. J. Nat. Prod. 2019;82:2379
    https://doi.org/10.1021/acs.jnatprod.8b00801
  74. Xiaoyu Li, Yunjian Xu, Fang Liu, Manli Zhao, Yi Sun, Qing Ma. Maize similar to RCD1 gene induced by salt enhances Arabidopsis thaliana abiotic stress resistance. Biochemical and Biophysical Research Communications 2018;503:2625
    https://doi.org/10.1016/j.bbrc.2018.08.014
  75. Pooja Singh, Krishna Kumar Choudhary, Nivedita Chaudhary, Shweta Gupta, Mamatamayee Sahu, Boddu Tejaswini, Subrata Sarkar. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Front. Plant Sci. 2022;13
    https://doi.org/10.3389/fpls.2022.1006617
  76. V. GALIĆ, M. MAZUR, D. ŠIMIĆ, Z. ZDUNIĆ, M. FRANIĆ. Special issue in honour of Prof. Reto J. Strasser - Plant biomass in salt-stressed young maize plants can be modelled with photosynthetic performance. Photosynt. 2020;58:194
    https://doi.org/10.32615/ps.2019.131
  77. Yuying Zheng, Junqin Zong, Jun Liu, Ruying Wang, Jingbo Chen, Hailin Guo, Weiyi Kong, Jianxiu Liu, Yu Chen. Mining for salt-tolerant genes from halophyte Zoysia matrella using FOX system and functional analysis of ZmGnTL. Front. Plant Sci. 2022;13
    https://doi.org/10.3389/fpls.2022.1063436
  78. Pawan Saini, Mudasir Gani, Jashan Jot Kaur, Lal Chand Godara, Charan Singh, S. S. Chauhan, Rose Mary Francies, Ajay Bhardwaj, N. Bharat Kumar, M. K. Ghosh. Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. 2022.
    https://doi.org/10.1007/978-981-10-7479-0_4
  79. Amrita Kasotia, Ajit Varma, D. K. Choudhary. Climate Change and the Microbiome. 2022.
    https://doi.org/10.1007/978-3-030-76863-8_29
  80. Seong-Cheol Park, Mi Sun Cheong, Eun-Ji Kim, Jin Hyo Kim, Yong Hun Chi, Mi-Kyeong Jang. Antifungal Effect of Arabidopsis SGT1 Proteins via Mitochondrial Reactive Oxygen Species. J. Agric. Food Chem. 2017;65:8340
    https://doi.org/10.1021/acs.jafc.7b02808
  81. Yangyan Zhou, Qing Li, Yue Zhang. Overexpression of the Poplar WRKY51 Transcription Factor Enhances Salt Tolerance in Arabidopsis thaliana. Forests 2023;14:191
    https://doi.org/10.3390/f14020191
  82. Shuangshuang Zhao, Qikun Zhang, Mingyue Liu, Huapeng Zhou, Changle Ma, Pingping Wang. Regulation of Plant Responses to Salt Stress. IJMS 2021;22:4609
    https://doi.org/10.3390/ijms22094609
  83. Harshraj Shinde, Ambika Dudhate, Lakshay Anand, Daisuke Tsugama, Shashi K. Gupta, Shenkui Liu, Tetsuo Takano. Small RNA sequencing reveals the role of pearl millet miRNAs and their targets in salinity stress responses. South African Journal of Botany 2020;132:395
    https://doi.org/10.1016/j.sajb.2020.06.011
  84. Jing Wang, Chengcheng Li, Xinghao Yao, Shenghao Liu, Pengying Zhang, Kaoshan Chen. The Antarctic moss leucine-rich repeat receptor-like kinase (PnLRR-RLK2) functions in salinity and drought stress adaptation. Polar Biol 2018;41:353
    https://doi.org/10.1007/s00300-017-2195-z
  85. Li Chen, Liantao Liu, Bin Lu, Tongtong Ma, Dan Jiang, Jin Li, Ke Zhang, Hongchun Sun, Yongjiang Zhang, Zhiying Bai, Cundong Li, Sergey Shabala. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS ONE 2020;15:e0228241
    https://doi.org/10.1371/journal.pone.0228241
  86. Ying Liu, Weihua Zhang, Dinakaran Elango, Haixue Liu, Dandan Jin, Xiaoyu Wang, Ying Wu. Metabolome and transcriptome analysis reveals molecular mechanisms of watermelon under salt stress. Environmental and Experimental Botany 2023;206:105200
    https://doi.org/10.1016/j.envexpbot.2022.105200
  87. Shalan Li, Jingxiong Zhang, Hui Liu, Nian Liu, Guojing Shen, Huifu Zhuang, Jianqiang Wu, Robert Hancock. Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. 2020;71:1171
    https://doi.org/10.1093/jxb/erz481
  88. Jubayer Al Mahmud, Mirza Hasanuzzaman, M. Iqbal R. Khan, Kamrun Nahar, Masayuki Fujita. β-Aminobutyric Acid Pretreatment Confers Salt Stress Tolerance in Brassica napus L. by Modulating Reactive Oxygen Species Metabolism and Methylglyoxal Detoxification. Plants 2020;9:241
    https://doi.org/10.3390/plants9020241
  89. Bo Wen Li, Shuai Gao, Zhi Min Yang, Jian Bo Song. The F-box E3 ubiquitin ligase AtSDR is involved in salt and drought stress responses in Arabidopsis. Gene 2022;809:146011
    https://doi.org/10.1016/j.gene.2021.146011
  90. Dan Wang, Elshan Musazade, Huan Wang, Junmei Liu, Chunyu Zhang, Wencong Liu, Yanxi Liu, Liquan Guo. Regulatory Mechanism of the Constitutive Photomorphogenesis 9 Signalosome Complex in Response to Abiotic Stress in Plants. J. Agric. Food Chem. 2022;70:2777
    https://doi.org/10.1021/acs.jafc.1c07224
  91. Faiza Tawab, Iqbal Munir, Zeeshan Nasim, Mohammad Sayyar Khan, Saleha Tawab, Adnan Nasim, Aqib Iqbal, Mian Afaq Ahmad, Waqar Ali, Raheel Munir, Maria Munir, Noreen Asim, Keqiang Wu. Identification and characterization of a novel multi-stress responsive gene in Arabidopsis. PLoS ONE 2020;15:e0244030
    https://doi.org/10.1371/journal.pone.0244030
  92. Kristof Holsteens, Isabel De Jaegere, Arne Wynants, Els L. J. Prinsen, Bram Van de Poel. Mild and severe salt stress responses are age-dependently regulated by abscisic acid in tomato. Front. Plant Sci. 2022;13
    https://doi.org/10.3389/fpls.2022.982622
  93. Eloy Navarro-León, Valeria Paradisone, Francisco Javier López-Moreno, Juan José Rios, Sergio Esposito, Begoña Blasco. Effect of CAX1a TILLING mutations on photosynthesis performance in salt-stressed Brassica rapa plants. Plant Science 2021;311:111013
    https://doi.org/10.1016/j.plantsci.2021.111013
  94. Antonio Pizolato Neto, Rita de Cássia Alves, Ayza Eugênio Viana Camargos, Priscila Lupino Gratão, Sônia Maria Raymundo Carregari, Sonia Marli Zingaretti, Durvalina Maria Mathias Dos Santos. Pretreatment of forage legumes under moderate salinity with exogenous salicylic acid or spermidine. Acta Sci. Agron. 2020;42:e42809
    https://doi.org/10.4025/actasciagron.v42i1.42809
  95. Yong Chan Park, Sandeep Chapagain, Cheol Seong Jang. The microtubule-associated RING finger protein 1 (OsMAR1) acts as a negative regulator for salt-stress response through the regulation of OCPI2 (O. sativa chymotrypsin protease inhibitor 2). Planta 2018;247:875
    https://doi.org/10.1007/s00425-017-2834-1
  96. Da-Ru Wang, Kuo Yang, Xun Wang, Chun-Xiang You. A C2H2-type zinc finger transcription factor, MdZAT17, acts as a positive regulator in response to salt stress. Journal of Plant Physiology 2022;275:153737
    https://doi.org/10.1016/j.jplph.2022.153737
  97. Anil Kumar Nalini Chandran, Jeong-Won Kim, Yo-Han Yoo, Hye Lin Park, Yeon-Ju Kim, Man-Ho Cho, Ki-Hong Jung. Transcriptome analysis of rice-seedling roots under soil–salt stress using RNA-Seq method. Plant Biotechnol Rep 2019;13:567
    https://doi.org/10.1007/s11816-019-00550-3
  98. Chao Wang, Rong Huang, Jianfeng Wang, Jie Jin, Kamran Malik, Xueli Niu, Rong Tang, Wenpeng Hou, Chen Cheng, Yinglong Liu, Jie Liu. Comprehensive Analysis of Transcriptome and Metabolome Elucidates the Molecular Regulatory Mechanism of Salt Resistance in Roots of Achnatherum inebrians Mediated by Epichloë gansuensis. JoF 2022;8:1092
    https://doi.org/10.3390/jof8101092
  99. Baoheng Xiao, Yiyi Hu, Xiaoqing Feng, Zhenghong Sui. Breeding of New Strains of Gracilariopsis lemaneiformis with High Agar Content by ARTP Mutagenesis and High Osmotic Pressure Screening. Mar Biotechnol 2022
    https://doi.org/10.1007/s10126-022-10184-2
  100. Edith Taleisnik, Andrés Alberto Rodríguez, Dolores A. Bustos, Darío Fernando Luna. Saline and Alkaline Soils in Latin America. 2022.
    https://doi.org/10.1007/978-3-030-52592-7_19
  101. P.W. Mashela. Chloride and carbonate salinity tolerance inMimusops zeyheriseedlings during summer and winter shoot flushes. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 2017;67:737
    https://doi.org/10.1080/09064710.2017.1343378
  102. Musa Al Murad, Abdul Latif Khan, Sowbiya Muneer. Silicon in Horticultural Crops: Cross-talk, Signaling, and Tolerance Mechanism under Salinity Stress. Plants 2020;9:460
    https://doi.org/10.3390/plants9040460
  103. Ria Khare, Gurpreet Sandhu, Aruba Khan, Prateek Jain. Physiology of Salt Stress in Plants. 2020.
    https://doi.org/10.1002/9781119700517.ch4
  104. Azamal Husen, Muhammad Iqbal, Sayed Sartaj Sohrab, Mohammd Kafeel Ahmad Ansari. Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric & Food Secur 2018;7
    https://doi.org/10.1186/s40066-018-0194-0
  105. Xuebing Huang, Maurice Amee, Liang Chen. Bermudagrass CdWRKY50 gene negatively regulates plants’ response to salt stress. Environmental and Experimental Botany 2021;188:104513
    https://doi.org/10.1016/j.envexpbot.2021.104513
  106. Silvia Busoms, Joana Terés, Levi Yant, Charlotte Poschenrieder, David E. Salt. Adaptation to coastal soils through pleiotropic boosting of ion and stress hormone concentrations in wild Arabidopsis thaliana . New Phytologist 2021;232:208
    https://doi.org/10.1111/nph.17569
  107. Yuan Zhou, Xiao-Hu Li, Qian-Huan Guo, Peng Liu, Ying Li, Chang-Ai Wu, Guo-Dong Yang, Jin-Guang Huang, Shi-Zhong Zhang, Cheng-Chao Zheng, Kang Yan, Li-Jia Qu. Salt responsive alternative splicing of a RING finger E3 ligase modulates the salt stress tolerance by fine-tuning the balance of COP9 signalosome subunit 5A. PLoS Genet 2021;17:e1009898
    https://doi.org/10.1371/journal.pgen.1009898
  108. Bronwyn J. Barkla, Adriana Garibay-Hernández, Michael Melzer, Thusitha W.T. Rupasinghe, Ute Roessner. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum . Plant Cell Environ 2018;41:2390
    https://doi.org/10.1111/pce.13352
  109. Edit Horváth, Krisztina Bela, Ágnes Gallé, Riyazuddin Riyazuddin, Gábor Csomor, Dorottya Csenki, Jolán Csiszár. Compensation of Mutation in Arabidopsis glutathione transferase (AtGSTU) Genes under Control or Salt Stress Conditions. IJMS 2020;21:2349
    https://doi.org/10.3390/ijms21072349
  110. Mohammad Ali Abbasi-Vineh, Mohammad Sadegh Sabet, Ghasem Karimzadeh. Identification and Functional Analysis of Two Purple Acid Phosphatases AtPAP17 and AtPAP26 Involved in Salt Tolerance in Arabidopsis thaliana Plant. Front. Plant Sci. 2021;11
    https://doi.org/10.3389/fpls.2020.618716
  111. Yujiao Wang, Jin Zhang, Zhenfei Qiu, Bingshan Zeng, Yong Zhang, Xiaoping Wang, Jun Chen, Chonglu Zhong, Rufang Deng, Chunjie Fan. Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment. 2021;9:e12133
    https://doi.org/10.7717/peerj.12133
  112. Fengman Yin, Shanying Zhang, Bili Cao, Kun Xu. Low pH alleviated salinity stress of ginger seedlings by enhancing photosynthesis, fluorescence, and mineral element contents. 2021;9:e10832
    https://doi.org/10.7717/peerj.10832
  113. Qiping Song, Min Zhou, Xipan Wang, Marian Brestic, Yang Liu, Xinghong Yang. RAP2.6 enhanced salt stress tolerance by reducing Na+ accumulation and stabilizing the electron transport in Arabidopsis thaliana. Plant Physiology and Biochemistry 2023;195:134
    https://doi.org/10.1016/j.plaphy.2023.01.003
  114. L. R. Bogoutdinova, E. N. Baranova, G. B. Baranova, N. V. Kononenko, E. M. Lazareva, E. A. Smirnova, M. R. Khaliluev. Morpho-Biological and Cytological Characterization of Tomato Roots (Solanum lycopersicum L., cv. Rekordsmen) Regenerated under NaCl Salinity in vitro. Cell Tiss. Biol. 2020;14:228
    https://doi.org/10.1134/S1990519X20030025
  115. Michela Osnato, Unai Cereijo, Jan Sala, Luis Matías‐Hernández, Andrea E. Aguilar‐Jaramillo, María Rosa Rodríguez‐Goberna, José Luis Riechmann, Manuel Rodríguez‐Concepción, Soraya Pelaz. The floral repressors TEMPRANILLO1 and 2 modulate salt tolerance by regulating hormonal components and photo‐protection in Arabidopsis . Plant J. 2021;105:7
    https://doi.org/10.1111/tpj.15048
  116. Chao Wang, Yibo Teng, Shan Zhu, Linlin Zhang, Xunyan Liu. NaCl- and cold-induced stress activate different Ca2+-permeable channels in Arabidopsis thaliana. Plant Growth Regul 2019;87:217
    https://doi.org/10.1007/s10725-018-0464-7
  117. Jieyu Yue, Yingjie Wang, Jinlan Jiao, Huazhong Wang. Comparative transcriptomic and metabolic profiling provides insight into the mechanism by which the autophagy inhibitor 3-MA enhances salt stress sensitivity in wheat seedlings. BMC Plant Biol 2021;21
    https://doi.org/10.1186/s12870-021-03351-5
  118. Liang Xu, Jia-Qian Song, Yue-Lin Wang, Xiao-Han Liu, Xue-Li Li, Bo Zhang, Ai-Jie Li, Xie-Feng Ye, Jing Wang, Peng Wang. Thymol improves salinity tolerance of tobacco by increasing the sodium ion efflux and enhancing the content of nitric oxide and glutathione. BMC Plant Biol 2022;22
    https://doi.org/10.1186/s12870-021-03395-7
  119. Shuaiqi Guo, Xuxia Ma, Wenqi Cai, Yuan Wang, Xueqin Gao, Bingzhe Fu, Shuxia Li. Exogenous Proline Improves Salt Tolerance of Alfalfa through Modulation of Antioxidant Capacity, Ion Homeostasis, and Proline Metabolism. Plants 2022;11:2994
    https://doi.org/10.3390/plants11212994
  120. Kanako Matsuse, Mostafa Abdelrahman, Nur Aeni Ariyanti, Fumitada Tsuji, Sho Hirata, Tetsuya Nakajima, Muneo Sato, Masami Yokota Hirai, Benya Manochai, Masayoshi Shigyo. Targeted Metabolome Profiling of Indonesian Shallots and Japanese Long-Day/Short-Day Bulb Onions. Metabolites 2022;12:1260
    https://doi.org/10.3390/metabo12121260
  121. Chao Song, Tania Acuña, Michal Adler-Agmon, Shimon Rachmilevitch, Simon Barak, Aaron Fait. Leveraging a graft collection to develop metabolome-based trait prediction for the selection of tomato rootstocks with enhanced salt tolerance. 2022;9
    https://doi.org/10.1093/hr/uhac061
  122. Caihua Li, Yuhuan Li, Peiyu Chu, Zhao Hao-hao, Zunmiao Wei, Yan Cheng, Xianxian Liu, Fengzhou Zhao, Yan-jun Li, Zhiwen Zhang, Yi Zheng, Zhongsheng Mu. Effects of salt stress on sucrose metabolism and growth in Chinese rose (Rosa chinensis). Biotechnology & Biotechnological Equipment 2022;36:706
    https://doi.org/10.1080/13102818.2022.2116356
  123. Liliane Souza Conceição Tavares, Sávio Pinho Reis, Deyvid Novaes Marques, Eraldo José Madureira Tavares, Solange Cunha Ferreira, Francinilson Meireles Coelho, Cláudia Regina Batista Souza. Molecular Plant Abiotic Stress. 2022.
    https://doi.org/10.1002/9781119463665.ch9
  124. Tingting Li, Yuqi Li, Zhijuan Sun, Xiangli Xi, Guangli Sha, Changqing Ma, Yike Tian, Caihong Wang, Xiaodong Zheng. Resveratrol Alleviates the KCl Salinity Stress of Malus hupehensis Rhed. Front. Plant Sci. 2021;12
    https://doi.org/10.3389/fpls.2021.650485
  125. Zhiwen Xu, Necla Pehlivan, Abazar Ghorbani, Chu Wu. Effects of Azorhizobium caulinodans and Piriformospora indica Co-Inoculation on Growth and Fruit Quality of Tomato (Solanum lycopersicum L.) under Salt Stress. Horticulturae 2022;8:302
    https://doi.org/10.3390/horticulturae8040302
  126. Minting Liang, Feng Hu, Dongsheng Xie, Zhibin Chen, Qingzhi Zheng, Qiyun Xie, Feng Zheng, Dongming Liu, Shuguang Jian, Hongfeng Chen, Xuncheng Liu, Faguo Wang. Physiological Measurements and Transcriptome Survey Reveal How Semi-mangrove Clerodendrum inerme Tolerates Saline Adversity. Front. Plant Sci. 2022;13
    https://doi.org/10.3389/fpls.2022.882884
  127. Muhammad Zohaib Afzal, Qi Jia, Aminu Kurawa Ibrahim, Sylvain Niyitanga, Liwu Zhang. Mechanisms and Signaling Pathways of Salt Tolerance in Crops: Understanding from the Transgenic Plants. Tropical Plant Biol. 2020;13:297
    https://doi.org/10.1007/s12042-020-09265-0
  128. Zixiu Liu, Yujiao Hua, Shengnan Wang, Xunhong Liu, Lisi Zou, Cuihua Chen, Hui Zhao, Ying Yan. Analysis of the Prunellae Spica transcriptome under salt stress. Plant Physiology and Biochemistry 2020;156:314
    https://doi.org/10.1016/j.plaphy.2020.09.023
  129. Jong-Joo Cheong. Stomata Regulation and Water Use Efficiency in Plants under Saline Soil Conditions. 2020.
    https://doi.org/10.1016/bs.abr.2022.02.010
  130. Hemasundar Alavilli, Hyoungseok Lee, Mira Park, Dae-Jin Yun, Byeong-ha Lee. Enhanced multiple stress tolerance in Arabidopsis by overexpression of the polar moss peptidyl prolyl isomerase FKBP12 gene. Plant Cell Rep 2018;37:453
    https://doi.org/10.1007/s00299-017-2242-9
  131. Ting-Ting Li, Wen-Cheng Liu, Fang-Fang Wang, Qi-Bin Ma, Ying-Tang Lu, Ting-Ting Yuan. SORTING NEXIN 1 Functions in Plant Salt Stress Tolerance Through Changes of NO Accumulation by Regulating NO Synthase-Like Activity. Front. Plant Sci. 2018;9
    https://doi.org/10.3389/fpls.2018.01634
  132. Y. H. Chen, Y. Y. Cao, L. J. Wang, L. M. Li, J. Yang, M. X. Zou. Identification of MYB transcription factor genes and their expression during abiotic stresses in maize. Biologia plant. 2018;62:222
    https://doi.org/10.1007/s10535-017-0756-1
  133. Zhengyang Yu, Xin Wang, Linsheng Zhang. Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress. IJMS 2018;19:3420
    https://doi.org/10.3390/ijms19113420
  134. Kavita Goswami, Deepti Mittal, Anita Tripathi, Budhayash Gautam, Sudhir K. Sopory, Neeti Sanan-Mishra. miRNA Regulatory Networks Underlying the Root–Leaf Synergism in Salt Tolerant Pokkali Rice. J Plant Growth Regul 2022
    https://doi.org/10.1007/s00344-022-10801-3
  135. Ana Lorena Sanchez-Lizarraga, Valeria Arenas-Montaño, Erika Nahomy Marino-Marmolejo, Luc Dendooven, Jesus Bernardino Velazquez-Fernandez, Gustavo Davila-Vazquez, Jacobo Rodriguez-Campos, Laura Hernández-Cuevas, Silvia Maribel Contreras-Ramos. Vinasse irrigation: effects on soil fertility and arbuscular mycorrhizal fungi population. J Soils Sediments 2018;18:3256
    https://doi.org/10.1007/s11368-018-1996-1
  136. Chunman Zuo, Yuhong Tang, Hao Fu, Yiming Liu, Xunzhong Zhang, Bingyu Zhao, Ying Xu, Mukesh Jain. Elucidation and analyses of the regulatory networks of upland and lowland ecotypes of switchgrass in response to drought and salt stresses. PLoS ONE 2018;13:e0204426
    https://doi.org/10.1371/journal.pone.0204426
  137. Dongping Zhang, Yuzhu Wang, Jinyu Shen, Jianfeng Yin, Dahong Li, Yan Gao, Weifeng Xu, Jiansheng Liang. OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. Rice 2018;11
    https://doi.org/10.1186/s12284-018-0232-3
  138. Jing Wang, Shenghao Liu, Chengcheng Li, Tailin Wang, Pengying Zhang, Kaoshan Chen, Keqiang Wu. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance. PLoS ONE 2017;12:e0172869
    https://doi.org/10.1371/journal.pone.0172869
  139. Satyen Mondal, Jamil Hasan, Priya Lal Biswas, Emam Ahmed, Tuhin Halder, Md. Panna Ali, Amina Khatun, Muhammad Nasim, Tofazzal Islam, Evangelina S. Ella, Endang M. Septiningsih. Recent Advances in Rice Research. 2017.
    https://doi.org/10.5772/intechopen.94038
  140. Yahui Chen, Haijia Li, Shiyang Zhang, Shanfeng Du, Guangyu Wang, Jinchi Zhang, Jiang Jiang. Analysis of the Antioxidant Mechanism of Tamarix ramosissima Roots under NaCl Stress Based on Physiology, Transcriptomic and Metabolomic. Antioxidants 2022;11:2362
    https://doi.org/10.3390/antiox11122362
  141. Kerstin Duscha, Cristina Martins Rodrigues, Maria Müller, Ruth Wartenberg, Larry Fliegel, Joachim W. Deitmer, Martin Jung, Richard Zimmermann, H. Ekkehard Neuhaus. 14-3-3 Proteins and Other Candidates form Protein-Protein Interactions with the Cytosolic C-terminal End of SOS1 Affecting Its Transport Activity. IJMS 2020;21:3334
    https://doi.org/10.3390/ijms21093334
  142. Kekeletso H. Chele, Morena M. Tinte, Lizelle A. Piater, Ian A. Dubery, Fidele Tugizimana. Soil Salinity, a Serious Environmental Issue and Plant Responses: A Metabolomics Perspective. Metabolites 2021;11:724
    https://doi.org/10.3390/metabo11110724
  143. Yibo Cao, Xiaoyan Liang, Pan Yin, Ming Zhang, Caifu Jiang. A domestication‐associated reduction in K+‐preferring HKT transporter activity underlies maize shoot K+accumulation and salt tolerance. New Phytol 2019;222:301
    https://doi.org/10.1111/nph.15605
  144. Azzreena Mohamad Azzeme, Siti Nor Akmar Abdullah. Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches. 2019.
    https://doi.org/10.1007/978-981-13-8805-7_2
  145. Delphine Arbelet-Bonnin, Camille Blasselle, Emily Rose Palm, Mirvat Redwan, Maharajah Ponnaiah, Patrick Laurenti, Patrice Meimoun, Françoise Gilard, Bertrand Gakière, Stefano Mancuso, Hayat El-Maarouf-Bouteau, François Bouteau. Metabolism regulation during salt exposure in the halophyte Cakile maritima. Environmental and Experimental Botany 2020;177:104075
    https://doi.org/10.1016/j.envexpbot.2020.104075
  146. Guang-Long Wang, Xu-Qin Ren, Jie-Xia Liu, Feng Yang, Yun-Peng Wang, Ai-Sheng Xiong. Transcript profiling reveals an important role of cell wall remodeling and hormone signaling under salt stress in garlic. Plant Physiology and Biochemistry 2019;135:87
    https://doi.org/10.1016/j.plaphy.2018.11.033
  147. Paulo André Ferreira de Freitas, Humberto Henrique de Carvalho, José Hélio Costa, Rafael de Souza Miranda, Kátia Daniella da Cruz Saraiva, Francisco Dalton Barreto de Oliveira, Daniel Gomes Coelho, José Tarquinio Prisco, Enéas Gomes-Filho. Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Rep 2019;38:403
    https://doi.org/10.1007/s00299-019-02382-5
  148. Xu-mei Jia, Yan-fang Zhu, Ya Hu, Rui Zhang, Li Cheng, Zu-lei Zhu, Tong Zhao, Xiayi Zhang, Yan-xiu Wang. Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline–alkali stress. Hortic Res 2019;6
    https://doi.org/10.1038/s41438-019-0172-0
  149. Biswa R. Acharya, Devinder Sandhu, Christian Dueñas, Jorge F. S. Ferreira, Kulbhushan K. Grover. Deciphering Molecular Mechanisms Involved in Salinity Tolerance in Guar (Cyamopsis tetragonoloba (L.) Taub.) Using Transcriptome Analyses. Plants 2022;11:291
    https://doi.org/10.3390/plants11030291
  150. Dengji Lou, Houping Wang, Diqiu Yu. The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol 2018;18
    https://doi.org/10.1186/s12870-018-1408-0
  151. Zohreh Heydarian, Min Yu, Margaret Gruber, Cathy Coutu, Stephen J. Robinson, Dwayne D. Hegedus. Changes in gene expression in Camelina sativa roots and vegetative tissues in response to salinity stress. Sci Rep 2018;8
    https://doi.org/10.1038/s41598-018-28204-4
  152. Marina Alves Gavassi, Frederico Rocha Rodrigues Alves, Rogério Falleiros Carvalho. Plant Hormones and Climate Change. 2018.
    https://doi.org/10.1007/978-981-19-4941-8_7
  153. Ming Li, Zhiyong Wu, Hong Gu, Dawei Cheng, Xizhi Guo, Lan Li, Caiyun Shi, Guoyi Xu, Shichao Gu, Muhammad Abid, Yunpeng Zhong, Xiujuan Qi, Jinyong Chen. AvNAC030, a NAC Domain Transcription Factor, Enhances Salt Stress Tolerance in Kiwifruit. IJMS 2021;22:11897
    https://doi.org/10.3390/ijms222111897
  154. Yanyan Wang, Yibo Cao, Xiaoyan Liang, Junhong Zhuang, Xiangfeng Wang, Feng Qin, Caifu Jiang. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun 2022;13
    https://doi.org/10.1038/s41467-022-29809-0
  155. Xiang You, Nasrullah, Dan Wang, Yuanyuan Mei, Juanjuan Bi, Sheng Liu, Wei Xu, Ning Ning Wang. N 7 ‐SSPP fusion gene improves salt stress tolerance in transgenic Arabidopsis and soybean through ROS scavenging . Plant Cell & Environment 2022;45:2794
    https://doi.org/10.1111/pce.14392
  156. Sagar Maitra, Preetha Bhadra, Ajar Nath Yadav, Jnana Bharati Palai, Jagadish Jena, Tanmoy Shankar. Soil Microbiomes for Sustainable Agriculture. 2022.
    https://doi.org/10.1007/978-3-030-73507-4_12
  157. Zihui Shen, Xiaojiao Cheng, Xiao Li, Xianya Deng, Xiuxiu Dong, Shaoming Wang, Xiaozhen Pu. Effects of silicon application on leaf structure and physiological characteristics of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. under salt treatment. BMC Plant Biol 2022;22
    https://doi.org/10.1186/s12870-022-03783-7
  158. Myung Geun Ji, Hee Jin Park, Joon-Yung Cha, Jin A. Kim, Gyeong-Im Shin, Song Yi Jeong, Eun Seon Lee, Dae-Jin Yun, Sang Yeol Lee, Woe-Yeon Kim. Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance. Plant Physiology and Biochemistry 2020;147:313
    https://doi.org/10.1016/j.plaphy.2019.12.032
  159. Eloy Navarro-León, Francisco Javier López-Moreno, Santiago Atero-Calvo, Alfonso Albacete, Juan Manuel Ruiz, Begoña Blasco. CAX1a TILLING Mutations Modify the Hormonal Balance Controlling Growth and Ion Homeostasis in Brassica rapa Plants Subjected to Salinity. Agronomy 2020;10:1699
    https://doi.org/10.3390/agronomy10111699
  160. Rashad Mukhtar Balal, Muhammad Adnan Shahid, Naeem Khan, Ali Sarkhosh, Muhammad Zubair, Atta Rasool, Neil Mattson, Celina Gomez, Muhammad Adnan Bukhari, Mirza Waleed, Wajid Nasim. Building Climate Resilience in Agriculture. 2020.
    https://doi.org/10.1007/978-3-030-79408-8_13
  161. R.P. Germano, S. Melito, S. Cacini, G. Carmassi, F. Leoni, R. Maggini, F.F. Montesano, A. Pardossi, D. Massa. Sweet basil can be grown hydroponically at low phosphorus and high sodium chloride concentration: Effect on plant and nutrient solution management. Scientia Horticulturae 2022;304:111324
    https://doi.org/10.1016/j.scienta.2022.111324
  162. Sérgio Heitor Sousa Felipe, Diego Silva Batista, Camilo Elber Vital, Kristhiano Chagas, Priscila Oliveira Silva, Tatiane Dulcineia Silva, Evandro Alexandre Fortini, Ludmila Nayara de Freitas Correia, Rodrigo Teixeira Ávila, Joseila Maldaner, Reginaldo Alves Festucci-Buselli, Fábio Murilo DaMatta, Wagner Campos Otoni. Salinity-induced modifications on growth, physiology and 20-hydroxyecdysone levels in Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Physiology and Biochemistry 2019;140:43
    https://doi.org/10.1016/j.plaphy.2019.05.002
  163. Biswa R. Acharya, Devinder Sandhu, Jorge F. S. Ferreira. The Alfalfa Genome. 2019.
    https://doi.org/10.1007/978-3-030-74466-3_9
  164. Pan Shu, Yujing Li, Ziye Li, Jiping Sheng, Lin Shen. SlMAPK3 enhances tolerance to salt stress in tomato plants by scavenging ROS accumulation and up-regulating the expression of ethylene signaling related genes. Environmental and Experimental Botany 2022;193:104698
    https://doi.org/10.1016/j.envexpbot.2021.104698
  165. Wei Dong, Yuguang Song, Zhong Zhao, Nian wei Qiu, Xijiang Liu, Weihua Guo. The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana. Biochemical and Biophysical Research Communications 2017;490:225
    https://doi.org/10.1016/j.bbrc.2017.06.025