Molecules and Cells

Cited by CrossRef (23)

  1. Julia Kofent, Juan Zhang, Francesca M. Spagnoli. The histone methyltransferase Setd7 promotes pancreatic progenitor identity. 2016
    https://doi.org/10.1242/dev.136226
  2. Alexandre Fellous, Ryan L. Earley, Frederic Silvestre. The Kdm/Kmt gene families in the self-fertilizing mangrove rivulus fish, Kryptolebias marmoratus, suggest involvement of histone methylation machinery in development and reproduction. Gene 2019;687:173
    https://doi.org/10.1016/j.gene.2018.11.046
  3. Soonil Koun, Jun-Dae Kim, Myungchull Rhee, Myoung-Jin Kim, Tae-Lin Huh. Spatiotemporal expression pattern of the zebrafish aquaporin 8 family during early developmental stages. Gene Expression Patterns 2016;21:1
    https://doi.org/10.1016/j.gep.2016.06.001
  4. Ashwini Jambhekar, Abhinav Dhall, Yang Shi. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019;20:625
    https://doi.org/10.1038/s41580-019-0151-1
  5. Myoung-Jin Kim, Daeun Moon, Sumi Jung, Jehee Lee, Jinu Kim. Cisplatin nephrotoxicity is induced via poly(ADP-ribose) polymerase activation in adult zebrafish and mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2020;318:R843
    https://doi.org/10.1152/ajpregu.00130.2019
  6. Jingci XING, Wei JIE. Methyltransferase SET domain family and its relationship with cardiovascular development and diseases. J Zhejiang Univ (Med Sci) 2022;51:251
    https://doi.org/10.3724/zdxbyxb-2021-0192
  7. Raffaella Fittipaldi, Pamela Floris, Valentina Proserpio, Franco Cotelli, Monica Beltrame, Giuseppina Caretti. The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development. Cells 2021;10:1233
    https://doi.org/10.3390/cells10051233
  8. Hong Ding, Wen Lu, Jun Hu, Yu-Chih Liu, Chen Zhang, Fu Lian, Nai Zhang, Fan Meng, Cheng Luo, Kai Chen. Identification and Characterizations of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Scaffold Hopping- and 2D-Molecular Fingerprint-Based Similarity Search. Molecules 2018;23:567
    https://doi.org/10.3390/molecules23030567
  9. Qi Yu, Zonglang Liao, Dan Liu, Wei Xie, Zhongqiu Liu, Guochao Liao, Caiyan Wang. Small molecule inhibitors of the prostate cancer target KMT2D. Biochemical and Biophysical Research Communications 2020;533:540
    https://doi.org/10.1016/j.bbrc.2020.09.004
  10. Qian Zhong, Xina Xiao, Yijie Qiu, Zhiqiang Xu, Chunyu Chen, Baochen Chong, Xinjun Zhao, Shan Hai, Shuangqing Li, Zhenmei An, Lunzhi Dai. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm 2023;4
    https://doi.org/10.1002/mco2.261
  11. Rong Xu, Yong Huang, Chen Lu, Weiming Lv, Shihua Hong, Shuqin Zeng, Wenyan Xia, Li Guo, Huiqiang Lu, Yijian Chen. Ticlopidine induces cardiotoxicity in zebrafish embryos through AHR-mediated oxidative stress signaling pathway. Ecotoxicology and Environmental Safety 2022;230:113138
    https://doi.org/10.1016/j.ecoenv.2021.113138
  12. Vincenzo Cavalieri. Histones, Their Variants and Post-translational Modifications in Zebrafish Development. Front. Cell Dev. Biol. 2020;8
    https://doi.org/10.3389/fcell.2020.00456
  13. Beenish Rahat, Renuka Sharma, Taqveema Ali, Jyotdeep Kaur. Perinatal and Developmental Epigenetics. 2020.
    https://doi.org/10.1016/B978-0-12-821785-6.00010-4
  14. Jaecheol Lee, Ning-Yi Shao, David T. Paik, Haodi Wu, Hongchao Guo, Vittavat Termglinchan, Jared M. Churko, Youngkyun Kim, Tomoya Kitani, Ming-Tao Zhao, Yue Zhang, Kitchener D. Wilson, Ioannis Karakikes, Michael P. Snyder, Joseph C. Wu. SETD7 Drives Cardiac Lineage Commitment through Stage-Specific Transcriptional Activation. Cell Stem Cell 2018;22:428
    https://doi.org/10.1016/j.stem.2018.02.005
  15. Naomi D. Chrispijn, Dei M. Elurbe, Michaela Mickoleit, Marco Aben, Dennis E.M. de Bakker, Karolina M. Andralojc, Jan Huisken, Jeroen Bakkers, Leonie M. Kamminga. Loss of the Polycomb group protein Rnf2 results in derepression of tbx-transcription factors and defects in embryonic and cardiac development. Sci Rep 2019;9
    https://doi.org/10.1038/s41598-019-40867-1
  16. Satheeswaran Balasubramanian, Azhwar Raghunath, Ekambaram Perumal. Role of epigenetics in zebrafish development. Gene 2019;718:144049
    https://doi.org/10.1016/j.gene.2019.144049
  17. Xin Yi, Xuejun Jiang, Xiaoyan Li, Ding-Sheng Jiang. Histone lysine methylation and congenital heart disease: From bench to bedside (Review). 2017;40:953
    https://doi.org/10.3892/ijmm.2017.3115
  18. Alissa D Marchione, Zanshé Thompson, Katie L Kathrein. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. 2021
    https://doi.org/10.1093/bfgp/elab022
  19. Fei Lu, Adam Langenbacher, Jau-Nian Chen. Transcriptional Regulation of Heart Development in Zebrafish. JCDD 2016;3:14
    https://doi.org/10.3390/jcdd3020014
  20. Carol Best, Heather Ikert, Daniel J. Kostyniuk, Paul M. Craig, Laia Navarro-Martin, Lucie Marandel, Jan A. Mennigen. Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2018;224:210
    https://doi.org/10.1016/j.cbpb.2018.01.006
  21. Xue‐liang Zhou, Rong‐rong Zhu, Xia Wu, Hua Xu, Yun‐yun Li, Qi‐rong Xu, Sheng Liu, Huang Huang, Xinping Xu, Li Wan, Qi‐cai Wu, Ji‐chun Liu. NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2. J Cellular Molecular Medi 2019;23:568
    https://doi.org/10.1111/jcmm.13961
  22. Roberta Codato, Martine Perichon, Arnaud Divol, Ella Fung, Athanassia Sotiropoulos, Anne Bigot, Jonathan B. Weitzman, Souhila Medjkane. The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network. Sci Rep 2019;9
    https://doi.org/10.1038/s41598-019-53577-5
  23. Jun-yi Zhu, Joyce van de Leemput, Zhe Han. The Roles of Histone Lysine Methyltransferases in Heart Development and Disease. JCDD 2023;10:305
    https://doi.org/10.3390/jcdd10070305