Molecules and Cells

Cited by CrossRef (34)

  1. Yuta Hara, Yukio Ago, Erika Takano, Shigeru Hasebe, Takanobu Nakazawa, Hitoshi Hashimoto, Toshio Matsuda, Kazuhiro Takuma. Prenatal exposure to valproic acid increases miR-132 levels in the mouse embryonic brain. Molecular Autism 2017;8
    https://doi.org/10.1186/s13229-017-0149-5
  2. Zhiyun Wei, Xingjun Meng, Rachid El Fatimy, Bowen Sun, Dongmei Mai, Junfang Zhang, Ramil Arora, Ailiang Zeng, Pingyi Xu, Shaogang Qu, Anna M. Krichevsky, Dennis J. Selkoe, Shaomin Li. Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways. Neurobiology of Disease 2020;134:104617
    https://doi.org/10.1016/j.nbd.2019.104617
  3. Shih-Hsin Chang, Yi-Ching Su, Mien Chang, Jun-An Chen. MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs. 2021;10
    https://doi.org/10.7554/eLife.63768
  4. Nelson R. Cabej. A mechanism of inheritance of acquired traits in animals. Developmental Biology 2021;475:106
    https://doi.org/10.1016/j.ydbio.2021.03.004
  5. Nelson R. Cabej. On the origin and nature of nongenetic information in eumetazoans. Annals of the New York Academy of Sciences 2023;1525:104
    https://doi.org/10.1111/nyas.15001
  6. Takuji Kasamatsu, Kazuyuki Imamura. Ocular dominance plasticity: Molecular mechanisms revisited. J of Comparative Neurology 2020;528:3039
    https://doi.org/10.1002/cne.25001
  7. Dan-Dan Cao, Lu Li, Wai-Yee Chan. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. IJMS 2016;17:842
    https://doi.org/10.3390/ijms17060842
  8. Shuo Zhang, Zuodi Liang, Wenchong Sun, Ling Pei. Repeated propofol anesthesia induced downregulation of hippocampal miR-132 and learning and memory impairment of rats. Brain Research 2017;1670:156
    https://doi.org/10.1016/j.brainres.2017.04.011
  9. Mahendra Kashyap, Subrata Pore, Michael Chancellor, Naoki Yoshimura, Pradeep Tyagi. Bladder overactivity involves overexpression of MicroRNA 132 and nerve growth factor. Life Sciences 2016;167:98
    https://doi.org/10.1016/j.lfs.2016.10.025
  10. Yong-Seok Lee, Jin-A Lee, Bong-Kiun Kaang. Regulation of mRNA stability by ARE-binding proteins in synaptic plasticity and memory. Neurobiology of Learning and Memory 2015;124:28
    https://doi.org/10.1016/j.nlm.2015.08.004
  11. Meng Jia, Xuewei Wang, Haolin Zhang, Can Ye, Hui Ma, Mingda Yang, Yijing Li, Cailian Cui. MicroRNA-132 in the Adult Dentate Gyrus is Involved in Opioid Addiction Via Modifying the Differentiation of Neural Stem Cells. Neurosci. Bull. 2019;35:486
    https://doi.org/10.1007/s12264-019-00338-z
  12. Theodora Kalpachidou, Kai K. Kummer, Michaela Kress. Non-coding RNAs in neuropathic pain. 2020;4
    https://doi.org/10.1042/NS20190099
  13. Alessia Luoni, Marco Andrea Riva. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacology & Therapeutics 2016;167:13
    https://doi.org/10.1016/j.pharmthera.2016.07.006
  14. Kai K. Kummer. Reference Module in Neuroscience and Biobehavioral Psychology. 2016.
    https://doi.org/10.1016/B978-0-12-809324-5.00010-9
  15. Samantha A. Banks, Marsha L. Pierce, Garrett A. Soukup. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2020;57:358
    https://doi.org/10.1007/s12035-019-01717-3
  16. Paul J. Kenny. Epigenetics, microRNA, and addiction. Dialogues in Clinical Neuroscience 2014;16:335
    https://doi.org/10.31887/DCNS.2014.16.3/pkenny
  17. Brigid Ryan, Greig Joilin, Joanna M. Williams. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front. Mol. Neurosci. 2015;8
    https://doi.org/10.3389/fnmol.2015.00004
  18. Conor P. Murphy, Nicolas Singewald. . 2015.
    https://doi.org/10.1007/7854_2019_109
  19. Si-si Li, Jia-jia Wu, Xiang-xin Xing, Yu-lin Li, Jie Ma, Yu-jie Duan, Jun-peng Zhang, Chun-lei Shan, Xu-yun Hua, Mou-xiong Zheng, Jian-guang Xu. Focal ischemic stroke modifies microglia-derived exosomal miRNAs: potential role of mir-212-5p in neuronal protection and functional recovery. Biol Res 2023;56
    https://doi.org/10.1186/s40659-023-00458-x
  20. Thomas Lissek. Activity‐Dependent Induction of Younger Biological Phenotypes. Advanced Biology 2022;6
    https://doi.org/10.1002/adbi.202200119
  21. Santiago Cuesta, José Maria Restrepo-Lozano, Steven Silvestrin, Dominique Nouel, Angélica Torres-Berrío, Lauren M Reynolds, Andreas Arvanitogiannis, Cecilia Flores. Non-Contingent Exposure to Amphetamine in Adolescence Recruits miR-218 to Regulate Dcc Expression in the VTA. Neuropsychopharmacol. 2018;43:900
    https://doi.org/10.1038/npp.2017.284
  22. Nelson R. Cabej. The Inductive Brain in Development and Evolution. 2018.
    https://doi.org/10.1016/B978-0-323-85154-1.00002-3
  23. Anita Kumari, Padmanabh Singh, Meghraj Singh Baghel, M.K. Thakur. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain. Physiology & Behavior 2016;158:34
    https://doi.org/10.1016/j.physbeh.2016.02.032
  24. Hailong Chen, Ke Lv, Zhongquan Dai, Guohua Ji, Tingmei Wang, Yanli Wang, Yongliang Zhang, Guanghan Kan, Yinghui Li, Lina Qu. Intramuscular injection of mechano growth factor E domain peptide regulated expression of memory-related sod, miR-134 and miR-125b-3p in rat hippocampus under simulated weightlessness. Biotechnol Lett 2016;38:2071
    https://doi.org/10.1007/s10529-016-2210-4
  25. Whitney Stee, Philippe Peigneux. Post-learning micro- and macro-structural neuroplasticity changes with time and sleep. Biochemical Pharmacology 2021;191:114369
    https://doi.org/10.1016/j.bcp.2020.114369
  26. . MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions. 2016;39:375
    https://doi.org/10.14348/molcells.2016.0013
  27. Patricia Marie Garay, Margarete Aryanka Wallner, Shigeki Iwase. Yin–yang actions of histone methylation regulatory complexes in the brain. Epigenomics 2016;8:1689
    https://doi.org/10.2217/epi-2016-0090
  28. Nelson R. Cabej. Epigenetic Principles of Evolution. 2016.
    https://doi.org/10.1016/B978-0-12-814067-3.00006-5
  29. Yifei Yu, Kun Hou, Tong Ji, Xishu Wang, Yining Liu, Yangyang Zheng, Jinying Xu, Yi Hou, Guangfan Chi. The role of exosomal microRNAs in central nervous system diseases. Mol Cell Biochem 2021;476:2111
    https://doi.org/10.1007/s11010-021-04053-0
  30. Kai K. Kummer, Theodora Kalpachidou, Michaela Kress. The Senses: A Comprehensive Reference. 2021.
    https://doi.org/10.1016/B978-0-12-805408-6.00010-5
  31. Indranil Basak, Ketan S. Patil, Guido Alves, Jan Petter Larsen, Simon Geir Møller. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell. Mol. Life Sci. 2016;73:811
    https://doi.org/10.1007/s00018-015-2093-x
  32. Jennifer Winter. MicroRNAs of the miR379–410 cluster: New players in embryonic neurogenesis and regulators of neuronal function. Neurogenesis 2015;2:e1004970
    https://doi.org/10.1080/23262133.2015.1004970
  33. C.K. Kim, A. Asimes, M. Zhang, B.T. Son, J.A. Kirk, T.R. Pak. Differential Stability of miR-9-5p and miR-9-3p in the Brain Is Determined by Their UniqueCis- andTrans-Acting Elements. eNeuro 2020;7:ENEURO.0094-20.2020
    https://doi.org/10.1523/ENEURO.0094-20.2020
  34. Abhijeet A. Bakre, Byoung-Shik Shim, Ralph A. Tripp. MicroRNA-134 regulates poliovirus replication by IRES targeting. Sci Rep 2017;7
    https://doi.org/10.1038/s41598-017-12860-z