Mol. Cells 2019; 42(2): 151~160  https://doi.org/10.14348/molcells.2018.0423
Alleviation of Ultraviolet-B Radiation-Induced Photoaging by a TNFR Antagonistic Peptide, TNFR2-SKE
Kyoung-Jin Lee, Kyeong Han Park, and Jang-Hee Hahn*
Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
*Correspondence: jhahn@kangwon.ac.kr
Received November 8, 2018; Revised December 13, 2018; Accepted January 1, 2019.; Published online January 23, 2019.
© Korean Society for Molecular and Cellular Biology. All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit (http://creativecommons.org/licenses/by-nc-sa/3.0/).
ABSTRACT
Ultraviolet (UV) radiation of the sunlight, especially UVA and UVB, is the primary environmental cause of skin damage, including topical inflammation, premature skin aging, and skin cancer. Previous reports show that activation of nuclear factor-κB (NF-κB) in human skin fibroblasts and keratinocytes after UV exposure induces the expression and release of proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α), and subsequently leads to the production of matrix metalloproteases (MMPs) and growth factor basic fibroblast growth factor (bFGF). Here, we demonstrated that TNFR2-SKEE and TNFR2-SKE, oligopeptides from TNF receptor-associated factor 2 (TRAF2)-binding site of TNF receptor 2 (TNFR2), strongly inhibited the interaction of TNFR1 as well as TNFR2 with TRAF2. In particular, TNFR2-SKE suppressed UVB- or TNF-α-induced nuclear translocalization of activated NF-κB in mouse fibroblasts. It decreased the expression of bFGF, MMPs, and COX2, which were upregulated by TNF-α, and increased procollagen production, which was reduced by TNF-α. Furthermore, TNFR2-SKE inhibited the UVB-induced proliferation of keratinocytes and melanocytes in the mouse skin and the infiltration of immune cells into inflamed tissues. These results suggest that TNFR2-SKE may possess the clinical potency to alleviate UV-induced photoaging in human skin.
Keywords: inflammation, NF-κB, photoaging, TNFR antagonist, TNFR2-SKE


Current Issue

31 January 2019 Volume 42,
Number 1, pp. 1~96

This Article


Cited By Articles
  • CrossRef (0)

Social Network Service
Services

Indexed in

  • Science Central
  • CrossMark