Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans
Ahjin Jung1,6, Ji-Sook Yun1,6, Shinae Kim1, Sang Ryong Kim2, Minsang Shin3, Dong Hyung Cho2, Kwang Shik Choi2,4,5,*, and Jeong Ho Chang1,5,*
1Department of Biology Education, 2School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, 3Department of Microbiology, School of Medicine, 4Research Institute for Dokdo and Ulleungdo Island, Kyungpook National University, 5Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Korea, 6These authors contributed equally to this work.
*Correspondence: (KSC); (JHC)
Received September 14, 2018; Revised November 5, 2018; Accepted November 14, 2018.; Published online January 2, 2019.
© Korean Society for Molecular and Cellular Biology. All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit (
Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase
activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of 2.5 Å. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (α1–β1) and with the α3 helix, which appeared to stabilize the dimerization of CaHINT. In
the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from
archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.
Candida albicans, crystal structure, histidine triad, HIT family, HINT

Current Issue

31 December 2018 Volume 41,
Number 12, pp. 993~1081

This Article

Cited By Articles
  • CrossRef (0)

Social Network Service

Indexed in

  • Science Central
  • CrossMark