Molecules and Cells

Indexed in /covered by CAS, KoreaScience & DOI/Crossref:eISSN 0219-1032   pISSN 1016-8478

Fig. 3.

Download original image
Fig. 3. (A) Schematic diagram of the Smg5 locus. Green, yellow, and black boxes correspond to coding regions, the PIN domain, and untranslated regions of Smg5 transcript, respectively. The green line indicates the coding region targeted by Smg5 RNAi; the red arrowhead depicts the piggy-Bac insertion site in the 5′ UTR of the Pbac{RB}Smg5e04233 allele. (B, F) Normalized activity profiles from three LD cycles were averaged per genotype. Averaged morning index values are shown above arrowheads. Error bars indicate SEMs (n = 51–159 for Smg5 mutants; n = 45–156 for Smg6 mutants). **p < 0.01, ***p < 0.001 compared with either heterozygous control by one-way ANOVA with Tukey’s post hoc test. White/black bars, LD cycles. Averaged actograms throughout the behavioral assessments were double plotted (n = 37–58 for Smg5 mutants; n = 17–50 for Smg6 mutants that remained alive after five LD and seven DD cycles). (C, G) Trans-heterozygous mutations in Smg5 or Smg6 decreased activity anticipatory to lights-on in LD cycles to lights-on in LD cycles. **p < 0.01, ***p < 0.001 compared with either heterozygous control by one-way ANOVA with Tukey’s post hoc test. Error bars indicate SEMs (n = 51–159 for Smg5 mutants; n = 45–156 for Smg6 mutants). (D, H) Trans-heterozygous mutations in Smg5 or Smg6 decreased the power of rhythmicity in DD locomotor behaviors. **p < 0.01, ***p < 0.001 by one-way ANOVA with Tukey’s post hoc test. Error bars indicate SEMs (n = 37–58 for Smg5 mutants; n = 17–50 for Smg6 mutants). (E) Schematic diagram of the Smg6 locus. Blue, yellow, and black boxes correspond to coding regions, the PIN domain with nuclease activity, and untranslated regions of Smg6 transcript, respectively. Blue lines indicate coding regions targeted by Smg6 RNAi. Smg62a allele has an aspartate-to-valine missense mutation in the indicated residue of the PIN domain.
Mol. Cells 2019;42:301~312 https://doi.org/10.14348/molcells.2019.2451
© Mol. Cells